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A rank test for bivariate time-to-event
outcomes when one event is a surrogate

Pamela A. Shaw*" and Michael P. Fay®

In many clinical settings, improving patient survival is of interest but a practical surrogate, such as time to disease
progression, is instead used as a clinical trial’s primary endpoint. A time-to-first endpoint (e.g., death or disease
progression) is commonly analyzed but may not be adequate to summarize patient outcomes if a subsequent event
contains important additional information. We consider a surrogate outcome very generally as one correlated
with the true endpoint of interest. Settings of interest include those where the surrogate indicates a beneficial
outcome so that the usual time-to-first endpoint of death or surrogate event is nonsensical. We present a new two-
sample test for bivariate, interval-censored time-to-event data, where one endpoint is a surrogate for the second,
less frequently observed endpoint of true interest. This test examines whether patient groups have equal clinical
severity. If the true endpoint rarely occurs, the proposed test acts like a weighted logrank test on the surrogate; if
it occurs for most individuals, then our test acts like a weighted logrank test on the true endpoint. If the surrogate
is a useful statistical surrogate, our test can have better power than tests based on the surrogate that naively
handles the true endpoint. In settings where the surrogate is not valid (treatment affects the surrogate but not the
true endpoint), our test incorporates the information regarding the lack of treatment effect from the observed
true endpoints and hence is expected to have a dampened treatment effect compared with tests based on the
surrogate alone. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
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1. Introduction

Challenges can arise in the analysis of clinical trials with surrogate outcomes when both a surrogate and
true endpoint of interest may be observed, but the true endpoint is observed infrequently. Here, we use an
informal definition of a surrogate endpoint that is often necessary in practice; namely, an endpoint that
is practical to study in an early phase trial and one for which an efficacious treatment would be expected
to also be efficacious for the true endpoint. We refer to this type of surrogate as a working surrogate, to
distinguish it from that of a validated or true surrogate by the usual Prentice or other statistical criteria [1].

Our motivating setting is a randomized treatment trial for patients with multiple drug-resistant tuber-
culosis. Because of the length of treatment, generally 2 years or longer, early-phase clinical trials are
typically done on a working surrogate marker, such as time to sputum conversion (first negative sputum
culture). For patients with multiple drug-resistant tuberculosis, the risk of death even for a relatively short
trial is not negligible. Treating death as censoring for time-to-conversion could lead to a misleading anal-
ysis of the treatment benefit. One could choose to ignore the surrogate event once the true endpoint is
observed, but this could also lead to the loss of potentially useful information in a setting where there is a
lot of censoring for both events. Rather than limiting the analysis in this setting to the timing of a single
event, we propose a method that uses information from the bivariate survival distribution.
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When the true and surrogate endpoints are both detrimental events, like death and cancer relapse, it
often makes sense to consider the time-to-first and redefine the endpoint as disease-free or progression-
free survival. This traditional approach does not makes sense when the event of interest is a failure (death)
and the surrogate is a success (sputum conversion), or vice versa. This setting is also different from the
traditional competing risk problem where, typically, one considers the time to the first of a collection of
events (such as death, stroke, heart failure, etc.) whose occurrence has the same connotation of success
or failure [2]. In the cancer setting, a subject may be observed to go into remission (success) and then die
from disease or treatment-related toxicities (failure). Adding to the complexity, different types of events
may not be of equal interest or importance. Once a competing true endpoint like death is observed, the
other event may no longer be of interest. Conversely, observation of the surrogate typically does not
preclude observing the true event. The proposed method is able to address a composite of beneficial and
detrimental endpoints and the potential asymmetry in the importance of the two events to the evaluation
of a patient’s outcome.

Much of the existing literature for analyzing multiple endpoints considers issues of testing multiplic-
ity or how to efficiently combine univariate test statistics across multiple outcomes of equal importance
and did not consider event-time outcomes [3-6]. DiRienzo and DeGruttola [7] compared strategies for
a bivariate failure time endpoint, where both endpoints are surrogates and considered methods that esti-
mated an average effect and an optimal omnibus test across the multiple endpoints. These methods treated
the two surrogate endpoints as having equal importance and did not consider the scenario where one
endpoint might be subject to heavy censoring. For strategies that combine univariate test statistics by
inversely weighting according to the variance, a seldom-observed true endpoint would naturally be down-
weighted relative to a more frequently observed surrogate [3, 7]. Finkelstein and Schoenfeld [8] present
a conditional expected score test that estimates a joint treatment effect for two failure time events that
are ordered in time, focusing in particular on disease progression and death, but their analysis also treats
both endpoints as equally important and assumes the same treatment effect for both endpoints.

We propose a rank-based test for a group comparison of outcomes that considers the treatment efficacy
on clinical severity and incorporates the bivariate event times of a short-term surrogate endpoint and long-
term true endpoint of interest. The rank test permits a flexible way to assess patient outcome, allowing a
setting-specific disease severity function. In the settings of interest, an observed true endpoint completely
determines the clinical severity. The proposed method also addresses bivariate interval-censoring. When
a subject is censored after an observed surrogate success and prior to the end of the trial or observation
of the true outcome, this introduces a novel type of interval censoring for the proposed measure of dis-
ease severity. We present the asymptotic properties and conditions for which the proposed test would
be asymptotically equivalent to a weighted logrank test on the event of interest. We further illustrate the
method with a data example.

2. Preliminaries

2.1. Bivariate likelihood

Let T; = (T);, T,;) denote paired event times that follow the bivariate distribution Fip(t) = Fp(t,1%,) =
P(T, £1,T, < t),fori = 1,...,n. In our setting, T}; is the surrogate event time and 7); is the true
endpoint. Suppose T, is censored according to some independent process and known only to be in the
region R; = ({};, r1;]1 X (Iy;, r5;]. The likelihood for n independent observations is thus

n

L= HPT(Ri) = H{FT(rli’ ry) = Fp(ryp b)) = Fy(ly, ry) + Fr(ly, b)) }-
i=1

i=1

We will use the bivariate non-parametric maximum likelihood estimator (NPMLE) for F in the methods
that follow, as it does not rely on parametric assumptions; however, other estimators could be used. The
NPMLE has been well studied [9-13] and shown to be strongly consistent for bivariate interval-censored
data [14, 15]. Unlike the univariate case, the bivariate NPMLE can have mixture nonuniqueness [12],
where the optimal distribution of mass across the regions in the support of the NPMLE may not be unique.
Conditions that guarantee mixture uniqueness of the NPMLE are easily checked [12]. We assume that
the NPMLE is mixture unique but return to this issue in the discussion.

Assume a discrete set of possible assessments at {a,,,...,a,;} for T} and {a,,,...,a5} for T,, with
O0=agp<a; <..<ag;<o0=a,and0=a, <ay <..<ay <o =ag,. Weallow for
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mixed-case interval censoring, where each individual may be assessed on some subset of these assessment
times. Asymptotically, this yields a finite number of regions for the finest assessment grid in which event
times can be observed to reside and the NPMLE will be consistent on A, the set of bivariate assessment
times that have positive probability [14]. Let u; = (a; ;_y,a;;] forj=1,2,....J + 1, and v; = (a54_, a;]
fork=1,...,K + 1. For notational convenience only, we assume the same maximum assessment time =
for both events. Here, 7 could be the intended length of follow-up for a clinical trial. Discrete assessment
times impose no practical limitation because J and K can be as large as needed and are natural for the
setting where the occurrence of an event is assessed periodically. Although it is customary to assume
survival time is known precisely or right censored, it is frequently rounded to the nearest day and hence
can also be considered discrete.

2.2. Group-level tests for interval censored data

Fay [16] presents a general form of the weighted logrank test for interval censored data of a univariate
outcome. Our proposed test will be an extension of this test for a univariate severity score that incorporates
information from the bivariate outcome. We review this test here and establish notation. Let R; = (/;, r;]
be the observed event region for individual i, and let S(z; f) be the survival distribution function for the
event time 7" under the semi-parametric grouped continuous model. For a binary treatment indicator, z;,

the efficient score statistic is U = Y z; {8'(1,) - §'(r)} {80, — S’(ri)}_1 = Y| z,¢;, where §'(¢) is the
derivative of S(#; ) with respect to f§ evaluated at § = 0, and $Sis the NPMLE for S under the null. We write
c; as r(R,, F'y), where Fy is the NPMLE for F, to emphasize that it can be viewed as a ranking function.
‘We assume the proportional odds model (i.e., logistic error), for which ¢; = r(R;, FT) =1 —FT(li)—FT(rl.).
The resulting permutation test is equivalent to the generalized Wilcoxon rank test of Peto and Peto [17].
The Wilcoxon test is natural for our setting, where ranking individuals according to clinical severity is of
interest. See Fay [16] for further details and other choices for r(R;, F 1)- The k-group test can be similarly
derived as a quadratic form using the score vector [16].

For the succeeding proposed method, it will be convenient to rewrite U Define u; = (a;_,a;] with
a; € Aforj € {1,...,J}, the set of J assessment times, a; = 0 and a;,; = oo. Let a be the 1nd1cat0r
thatu CR,, forz—l .,nandj=1,...,J+ 1. Then

. " . I+l a; {S"(w_l) - S"(a)}
55 > ay, {8€a,_) - Sa,)}
~ no Jil @ {S(a-_l) - S(a-)} Sl(aj_l) - S/(aj)
= i AL e 8@ = S@p) | | Sa) - S@)

From this expression, we see that U can also be written as

" Pr(u)r(u;, Fr)

J J’
DI IR 1)

i=l  wER;

where PT(uj) = PT((aj_l, aj]) =F T(aj) -F T(aj_l) estimates the probability that the event occurred in
(aj_l, aj] and r(uj, F r)=1- F (aj_l) —F (aj). The ith individual’s contribution to the usual score statistic
can be seen as a weighted average of the function r(u;, F )

3. Proposed method

3.1. Defining clinical severity

The goal in many clinical research studies is to examine whether patients are better under treatment A or
treatment B. When T, is a surrogate for 7,, it may make sense to have the severity completely determined
by T, when it is observed and otherwise determined by 7. We consider this special case in detail, as it is
relevant for the setting that motivated this work and yields useful asymptotic properties. In this case, we
will see that the proposed method reduces to a weighted summary statistic based on the two individual
failure times. In other settings, 7; may contain auxiliary information not provided by 7, and a composite
severity score that assigns weights to the different event times may be of interest. The severity score Q is
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used in a rank test, so only the ordering induced by Q is important. So long as the clinical severity score
is quantified by a bounded real-valued function Q(T), there will be sufficient regularity for the limiting
behavior of the proposed test.

3.1.1. Surrogate good/true endpoint bad. Suppose a larger value of T, (survival) indicates less severe
disease, but larger T (surrogate) indicates more severe disease. Consider the following severity score Q,
where high values of Q are associated with less severe disease.

Case I (No loss to follow-up)
In this case, everyone is observed until death or until the end of the trial, at time 7. For t = (¢, ¢,), define
O(t) = O(t;, 1,) as O, ) =t,ift, <7

=2(r+1)—1,ift, > 7.

Thus, all survivors are scored as less severe than those who die. Later death times are scored as less
severe; for survivors, earlier surrogate event times are less severe. When ranking severity, an event time
that is censored at time 7 can be considered as happening at a time € beyond 7; we assume € = 1. The
value of e is arbitrary and serves only to break ties in the severity for the cases where a subject is observed
to die at time 7, survive without converting by time 7, or convert on day 7. In these cases Q takes on the
values 7, 7 + 1, and 7 + 2, respectively. Figure 1 illustrates the assessment grid, assuming the possible
inspection times are the positive integers up to = = 20 for both the surrogate and survival times and
displaying the severity score Q(a,;, a,;) in the square defined by u; X v;. Thus, events can happen at time
1, ..., 20, and the possible values for Q range from 1 (subject died at week 1) to 41 (subject converted at
week 1 and survived the length of the trial). For those observed to die before the surrogate success, the
possible severity ranks are shown at 7, = co. Someone who survives the trial without converting has a
severity score of Q(21,21) = 21. The next best score is for someone who converted on the 20th week,
Q(21,20) = 22, etc.

Case 2 (Loss to follow-up)

Now suppose there is loss to follow-up for the ith subject at time L, where 0 < L < 7. Q(T) is interval-
censored in (L, 27 — L + 2) if min(7}, T,) is known to be greater than L and interval censored in (L, 7] U
27 —a); + 2,27 —a;;_; + 2)if T is known to be in (a;;_;,qa, ], where a,; < L. Figure 1 shows the
interval-censored region for Q(T) for an individual with 7 interval-censored (5, 8] and T, right censored
at time 16.

Ranking Values: Worst to Best

o [4]2oI30]z8[37[ze]35][34]33[32]31]30] 29[28]27[26]25]24] 23[22]21] -
7] [20/20/20/20/2020/20/20|20|20|20/20|20|20|20|20|20|20|20|20] [20]
19]19/19[19(19|19/19/19/19(19[19[19/19[19]19[19]19[19]19 119
18|18/18[18(18|18/18/18/18[18/18[18/18[18/18[1818[18 18]
17[17/17[17[17[17117[17/17[17[17[17[17[17[17[17]17 [17]

w | |16[16]16[16]16|16]16(16|16[16|16]16]16]16]16]16 [16]
7| [15[15]15/15[15/15[15/15[15]15(15/15/15[15[15 [15]
14[1414[14]14[14[14[14]14[14]14[14]14[14 [14]

c 13[13]13[13[13[13[13[13]13[13[13[13[13 [13]
g 12[12]12[12[12[12[12[12[12[12[12[12 [12]
S o | [mfunfnff[arfra]ie]a [11]
= | [10[10[10[10[10[10[10[10[10[10 [10]
£ ERIEIEIEIEIEIERE 9]
8[8ls/8[s/8[8]8 8]
777177177 7]

ol [6/6/6[6]6]6 6]
5(5(5/5[5 5]
414]4]a 4]

3[3]3 3]

2[2 2]

od U1 1]

[ T T T T 1

0 5 10 15 20 w

Time to Surrogate

Figure 1. The assessment grid defined by positive-integer inspection times up to 7 = 20. The severity score
0(ay;, ay) is shown in the square (a, ;_;, a; ;1X (@, 4_,, @, ;1. The shaded region indicates (T, T,) occurs in (5, 8] X
(16, 0).
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3.1.2. Surrogate bad/true endpoint worse. It is straightforward to modify Q for other settings, where
earlier times are clinically either both worse or both better for the two endpoints. Suppose earlier times
are worse.

Case 1 (No loss to follow-up)
We define

Ot 1) = 1, if 1, < 7
=T+t1,ift2 > T,

where the severity for someone who survives =z with no surrogate event is defined by 27 + 1. Once again,
all the survivors (of the true endpoint) will be ranked better than those who died (have an observed
true endpoint).

Case 2 (Loss to follow-up)

Now suppose there is loss to follow-up for the ith subject at time L, where 0 < L < 7. Q(T) is interval
censored in (L, 7] U (7 + L, 27 + 1] if min(7, T,) is known to be greater than L and interval censored in
(L,z]u(r +ay_y, v +a;]if T) is known to be in (a,;_;, a, ], where a; ; < L.

3.2. Estimating the severity distribution function

In Section 3.1.1, a univariate severity score Q(T) is defined as a function of the interval-censored bivariate
outcome T. Given the bivariate distribution function Fp, a cumulative distribution function F, for the
severity score is induced. We propose the use of the bivariate NPMLE F: - Let M = {M,} be the set of
all rectangular regions (of maximal intersection) M, in the support of Fry. Recall from Section 2.1, the
discrete set of possible assessment times allow us to think of each M, as the union of one or more of
the non-overlapping, irreducible regions u; X v; from the underlying assessment grid. For the proposed
method, we will need to specify the distribution of mass across these irreducible regions in each M,.
We propose the probability mass within M, be distributed uniformly. Other possible estimators could
include a semi-parametric approach that considers kernel type estimates of this distribution based on the
neighboring density distribution. In Section 4, we establish that asymptotically, under certain regularity
conditions, the distribution of mass across the grid units within M, € M is inconsequential. We define
Fyas

Py(M,)

#M,nA} @

Fop=PQ<g= Y D HOa;a)<aq)

M,eEM (a,jay)EM,NA

where #{M, N A} is the number of grid units u; X v, in M,. Note, by definition, each maximal clique
contains at least one point on the assessment grid, thus #{M, N A} > 0. From the definition of Q in
Section 3.1.1, there are J + K + 1 possible severity scores 0 < g; < .... < g;, g, < oo in the range of Q.

3.3. Proposed hypothesis test

We propose a group-level test, based on the ranks of clinical severity Q, that uses the NPMLE for bivariate
survival distribution F; and accommodates the interval-censoring structure of the data. We show that this
test reduces to a weighted combination of two test statistics for the special case of surrogacy considered
in Section 3.1.

The usual two-sample test for univariate interval-censored data, described in Section 2.2, is not well-
suited for an analysis of the clinical severity score Q for two reasons. Firstly, it assumes a contiguous
interval for the interval-censored event region, and secondly, it does not fully take advantage of the
bivariate information in the observed data {T;}. The possible severity scores for an individual with a
right-censored true endpoint and a surrogate known to occur will be noncontiguous, as demonstrated in
Figure 1. There could also be multiple paired event times with the same severity Q but different weights
in the bivariate distribution f’T. To account for this, we propose the ith individual’s contribution to the
test statistic be a weighted sum of the ranking function of the possible severity scores that Q assigns to
the set of irreducible assessment regions u; X v, in the individual’s R; (here a bivariate event region) and
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whose weights are based on the conditional distribution given T € R;. Define Q*(u; X v;) = Q(ay;, ay).
Suppose Q(ay;, ay) = q;, that is, the /th largest possible severity score, then one has the ranking function
r{ Q" (u; X vy), FQ} =1- f’Q(ql) — FQ(ql_]). Thus, the proposed statistic is

Pr(u; X vr{ Q*(u; x v,), Fyy}

U= S = S . / ! . 3
;zlcl Zz, Z BR) (3)

=1 u;XvCR;

A p-value can be obtained by performing a permutation test.
To understand the properties of this test statistic, it will be convenient to rewrite Equation (3) as a

weighted sum of two test statistics. Let %k be the indicator that u; X v, is in the ith event region R;, and

let p;; be the mass assigned to u; X v; by F. Define w; = ZJ+1 Zk_ Wp{km then W; = Pp(T); <
m=1 XitmPim

7|T; € R;) and the ith individual’s contribution to the score statistic in (3) can be seen as c;z;, where

J+1 K N .
_ aPur { Q" X vy), FQ} & HsnPjksny” { Q7w X v ). Fo )
¢ = Z Z J+1 oK+l A J+1 oKk+1 A
J=1 k=1 =1 Zm 1 XiimP im j=1 =1 zm 1 P im
J+ K J+1
—q Ukpfkr{Q (; X v), FQ} . U(K+1)P](K+1)’”{Q (u; X vy, FQ}
= Wi Z J+1 - W) Z T
J=1 k=1 I=1 Zm | FimPim j=1 =1 Yk+»Pik+1)
Then one has
J+1
-1 1 c N c w; Zk 1 &ij=1 l/kpjkr{Q (“ X V), FQ}
n U= ; w; Z" - —— Z
=l i=1 Zuv=1 "y Zm:l 21:1 XitmPim
J+1 .
1 w R L=y X YkanPikeny QT X v ). Fod (4
"\ (I =) Z (1= J+1 g
i=1 i=1 Zy=100 T Wy 21:1 Qg+ DPIK+1)

=P(T,<1) - Uy+ {1 -P(T, < 1)} - U,.

U is thus a weighted sum of two statistics: U,, which can be viewed as a re-weighted version of the
univariate score statistic (1) for interval-censored T, with weights equal to an individual’s probability
of having a death before 7 relative to the rest of the cohort; and U,, which can similarly be seen as a
re-weighted statistic based on a linearly transformed surrogate for survivors (27 — T + 2 for Q defined
asin 3.1.1 and 7 + T for Q defined as in 3.1.2), with weights equal to person i’s relative probability of
having T, > 7. The estimated P(T, < 7) determines the weight given to U,. Note, if 7, was censored
for all subjects, the necessary quantities in (4) would still be estimable. In this case, lf’(T2 < 7)=0.The
maximal cliques would be univariate intervals and (4) reduces to the univariate score statistic based on
the NPMLE for the univariate marginal of 7. Similarly, if death was always observed, then (4) reduces
to a univariate statistic based on the NPMLE for the univariate marginal of 7,.

4. Properties

We describe the regularity conditions that allow for a valid permutation test. We also provide an intuitive
argument for why the proposed test is approximately equivalent to the usual score test for interval-
censored survival data for the true endpoint alone (7,), when the trial is allowed to run long enough that
T, will have occurred on everyone. Note, this is not the same as assuming there is no censoring. The result
holds under interval or right-censoring due to missed assessments; we assume the trial is long enough
that there will be no survivors at the end of the trial, that is, P[T, > 7] = 0. Formal proofs of both results
are provided in the Supporting Information.
First, we require the following standard assumption for censored time-to-event data, as stated in A1.

(A1) The inspection process is jointly independent of the treatment Z and the bivariate failure time
T = (T, T,), and (T;, Z;) are independent and identically distributed (i.i.d.) fori=1,...,n
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With this assumption, we have the following result, which establishes the validity of the permutation
test for the proposed test statistic in Equation (3).

Theorem 1

Given assumption Al, the severity function in Section 3.1, and U defined in Equation (3), one has the
two-sample permutation test using W = U as a test statistic is valid, that is, maintains the type I error
rate under the null hypothesis of no treatment effect.

For our second result, we need two additional assumptions, formally stated in the succeeding text.
Assumption A2 assumes the trial is long enough for all individuals to have the true event. Assumption A3
sets up the semi-competing risk problem, which is reasonable when the event of interest is death, since
even if a surrogate event is indicative of a cure, individuals may die of other causes. The results can also
be readily adapted for non-semicompeting risk data.

(A2) Let a,x = 7 be such that 7 < oo and P(T, > a,x) = 0.

(A3) Let A; be the set of possible bivariate inspection times for the ith individual. Denote the possible
inspection times as {alj},!=1 for T; and {an}kK=1 for T,. Assume the A; are i.i.d. such that each
pair (ay;, ay,) consistent with 7', < T, has positive probability of occurring, and only these pairs.
Call this set .A.

We now have the following result, which establishes that our proposed test statistic reduces to a
univariate test on 7,.

Theorem 2
Given assumptions A2-A3, severity function defined as in Section 3.1.1 or 3.1.2, U defined in equation

(3), and U, in Equation (4), one has n~'U — U, 220,

The full proof is given in the Supporting Information. Briefly, with the assumed regularity, the bivariate
NPMLE will be strongly consistent at any observation time a € A [14]. The test statistic (3) relies
on the estimated distribution functions only through a € A. Furthermore, because all individuals will
either be right-censored or have an observed event T, at a time less than a,,, the NPMLE will assign no
weight to regions for which T, > a,x. Thus, P(T, < 7) = 1, and by Equation (4), one has n~'U = U,,
which gives the result. One can also show that n~!U is approximately equivalent to the usual univariate
weighted logrank statistic for 7,, with the only difference being that the bivariate NPMLE is used to
estimate the marginal for 7. It can be shown similarly that for rarely occurring 7,, the proposed test
will be approximately equal to the univariate test for interval censored 7. For this result, we rely on
the approximate equivalence of F7, and Fy, 7., for P(T, > 7) ~ 1 and on the invariance of the chosen
generalized Wilcoxon ranking function r(:, F) under monotonic transformations.

5. Simulation studies

We consider a hypothetical phase II clinical trial examining a novel regimen with potential toxicity con-
cerns. The Linezolid Trial for XDR-TB is one such trial, which studied the efficacy of adding linezolid
immediately versus after an 8-week delayed start to the background regimen on the working surrogate
marker of time to sputum culture conversion from positive to negative [18]. We numerically simulated
a trial similar to this setting, where 7 is time to sputum conversion and T, is survival, censored at 20
weeks. We also simulate a long-term trial, where both endpoints are subject to less censoring. We assume
a treatment benefit for the surrogate, that is, quicker times to sputum conversion, but vary the effect
on survival.

We examine the performance of several rank-based methods to evaluate treatment efficacy, including
(i) the naive method: a generalized Wilcoxon test [17] for the difference in time to sputum conversion
between treatment groups that treats death as a censoring event; (ii) the weak method: a generalized
Wilcoxon test for the survival endpoint; (iii) the death penalty: which assigns anyone who dies the worst
outcome and otherwise is the generalized Wilcoxon test for surrogate event; and (iv) the proposed, the
rank-based test for the clinical severity score. The severity score of Section 3.1.1 is used. Analysis is done
in R version 2.14 [19]. The Icens and MLEcens packages are used to find the regions of maximal inter-
section and the bivariate NPMLE, respectively. The ranking functions r (Q* (u; X vp), F, Q) are calculated
using the interval package, and the permutation tests were done with perm package [20]. For the permu-
tation tests, we set the perm method="exact.mc", which then estimated the exact p-value using Monte
Carlo simulation and a specified 10,000 iterations.
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We generate the bivariate endpoint T = (7, T,) using hierarchical relative models, where the surrogate
event time 7, influences the survival time 7, and both outcomes (7, T,) can be influenced by treatment
Z. We assume Ag, (t;) = g, (t;) exp(az) and Ay, (1;) = Ay (1) exp(B, 1, + f,2). Dependence between 7' and
T, is thus modeled by the parameter f,. T| can be thought of as a potentially latent variable associated
with the underlying disease process, which may not be observed. We do not assume T, is a true surrogate,
in the sense of Prentice [1], and allow the treatment to have an independent effect on death not captured
by T, (f, # 0). A treatment survival benefit mediated through the surrogate is modeled with a positive «
and f,. A negative (positive) f, allows for an independent beneficial (detrimental) effect of treatment on
survival. For simplicity, T} and T, are assumed to be reported on the same, weekly, time scale. Baseline
survival distributions for 7| and 7, endpoints are simulated as exponential (yj), j = 1,2 and then rounded
to integer time.

In scenario 1, the relative and baseline hazard parameters were chosen so that the naive Wilcoxon
test for the surrogate has roughly 80% power for 50 individuals per arm in the short trial, and this test
for efficacy based on the true and surrogate endpoint had similar power (roughly 85%) in the long trial,
namely, (a, By, f,) = (0.8,1.5,-0.5), (v, 7,) = (20, 100), 7,,, = 20 and 7;,,,, = 170. Individuals were
also subject to right censoring due to loss to follow-up, modeled with a 30% probability of dropout before
7 and dropout time distributed uniformly over (0, 7). These parameters are associated with approximately
30% (70%) censoring for the surrogate (survival) event for the short trial and 20% censoring for both
event times in the long trial. Results from the long trial for the weak (survival) endpoint can be considered
the gold standard benchmark, in that they are results of a test of efficacy for the (impractical) trial based
on the true endpoint of interest.

Table I shows the probability of rejecting for benefit for scenario 1. In the short trial, the naive and
proposed methods yield very similar results, with the proposed having slightly more power as it was able
to use information on the second endpoint. The weak method based on survival alone had low power
(43.5%), due to the high level of censoring. The death penalty method, which treated all deaths with the
same (worst) event time, did well in the short trial but performs relatively poorly in the long trial with
only 70% power, due to the number of ties in the failure times induced by giving all deaths the same
failure time. As expected, for the long trial, the proposed method provides similar results to the usual
analysis of survival. Because the net treatment benefit for the survival endpoint and the surrogate were
similar, the power for both these endpoints in the long trial is similar.

Table II shows the power for three scenarios with the same treatment effect for the surrogate (a = 0.8),
but vary the treatment benefit for survival to be (1) a weaker benefit than for the surrogate with a benefit
only mediated through the surrogate, and roughly 20% power for the benchmark long-term trial results
for survival (@ = 0.8, §; = 1.5, f, = 0); (2) useless, with a mortality hazard ratio of 1 for both indirect

Table 1. Probability of rejecting
for benefit by trial length, when
there is efficacy for both surro-
gate and survival endpoints.

Estimators Short  Long

Naive 79.8 83.8
Weak (survival) 43.5 86.2
Death penalty 84.6 70.0
Proposed 82.4 86.7

Table II. Probability of rejecting for benefit by trial length, when
there is efficacy for a surrogate and different assumptions for
treatment efficacy on survival.

Weaker benefit No effect Harm
Estimators Short Long  Short Long Short Long
Naive 79.4 83.8 86.0 89.7 765 80.6

Weak (survival) 12.8 20.5 3.1 2.7 0.0 0.0
Death penalty 67.4 12.2 69.4 6.7 5.7 0.0
Proposed 56.9 21.2 52.1 3.6 0.5 0.0
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and direct effects of treatment (@ = 0.8, f; = 0, #, = 0); and (3) harmful, by keeping the indirect benefit
of treatment conveyed through shorter conversion terms and adding an independent, detrimental effect
of treatment that outweighs the benefit mediated by the surrogate (« = 0.8, f; = 1.5, 5, = 1).

Consider first the weaker benefit scenario. In the short trial, the naive method has similar power as
before, which is now more optimistic than what would be observed in the longer trial for survival. The
proposed method provides some skepticism in the short term with a power of 56.9% and, for the long-
term trial, has similar, only slightly elevated power of 21.2% compared with the 20.5% for the true
survival endpoint. For the no treatment benefit scenario, the proposed method has less power than the
naive analysis in the short-term and, for the long-term trial, has power only slightly above the nominal
2.5% one-sided type I error rate for survival. For the scenario with an overall harmful effect of treatment,
the proposed method has almost no chance of rejecting for benefit in either the short or long trial. The
naive analysis has a high probability of rejecting for benefit in all three scenarios, because the effect on
the surrogate remains the same and death is treated as censoring. The death penalty method had similar
results as the proposed for both the long and short trials of the no effect and harm scenarios. For this
method, the loss of information is not an issue for the useless treatment scenario and is actually helpful
in the harmful treatment scenario. The proposed method was the only method that provided reasonable
answers in all scenarios.

We conducted a similar set of scenarios assuming an alternate model for the bivariate event times,
namely, a linear transformation model where the log-transformed T conditioned on Z has a normal error
distribution. Details of these simulations and results are presented in the Supporting Information. The
relative performance of the methods was similar to those results presented here. In the Supporting Infor-
mation, we also confirm the validity of the proposed test by performing simulations under the model
above and the alternate survival model, assuming a null treatment effect and varying sample sizes. As
expected, the proposed method, which relies on the exact permutation test, preserved the Type I error.

6. Studies of Left Ventricular Dysfunction trial

The Studies of Left Ventricular Dysfunction trials were randomized placebo-controlled trials of the effi-
cacy of enalapril for the treatment and prevention of congestive heart failure to improve survival in
patients with a weak left ventricular ejection fraction [21]. A key secondary aim was to assess the effect
of treatment on hospitalization for congestive heart failure. In the treatment trial, enalapril was associated
with a 16% decrease in mortality risk (p = 0.0036) and a 26% reduction in hospitalization for congestive
heart failure (p < 0.0001). As an illustrative example for the proposed method, we present an analysis of
these endpoints in a subset of 662 subjects with diabetes. Data and R code for the analysis are provided
in the Supporting Information.

In order to summarize treatment efficacy on the patient’s clinical severity, we consider both hospital-
ization (7'}) and mortality (7). For both endpoints, the sooner the event, the worse off the patient, so the
time-to-first endpoint is appropriate here. We also consider a surrogate severity score similar to that of
Section 3.1.2, so that earlier surrogate events (hospitalization) are ranked worse than later ones, while
maintaining that survivors are ranked better than those who die. In this trial, not all subjects had the same
length of follow-up. The subject with the longest follow-up determines 7. For survivors with a shorter
follow-up time, say u < , their severity score is then interval-censored between the value of Q that
assumes they died at time u + 1 and the score that assumes they survived 7.

We compare the proposed test that examines the treatment effect on Q with the usual univariate logrank
test for the treatment effect on: time to death, time to hospitalization (treating death as a censoring event),
and the usual time-to-first of hospitalization or death. We also provide the p-values for the generalized
Wilcoxon test. Table III presents the mortality and hospitalization outcomes by arm, as well as the usual
Cox proportional hazards ratio and logrank test results for three time-to-event endpoints. For diabetic
subjects, there was no survival benefit; however, the treatment had a 40% reduction in risk of hospital-
ization (p < 0.0001) and a 29% reduction in risk for the time to first endpoint, hospitalization or death,
(p = 0.0007). One aspect of the mortality events that was not captured by the time-to-first endpoint is that
hospitalizations on the enalapril arm were more likely to be followed by a death than the placebo arm. For
the enalapril arm, 57/94 (61%) of hospitalizations were followed by a death, whereas on placebo 64/148
(43%) of the hospitalizations were followed by a death. The proposed rank test on the severity score has
a p-value= 0.07 for the treatment group difference. Such a result helps quantify the level of evidence for
an overall beneficial effect of enalapril, in a way that considers the timing of both events when they both
occur rather than ignoring information on the more serious, second event.
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Table III. Hospitalization, mortality, and time-to-first hospitalization or death
(TTF) endpoints for subjects in SOLVD treatment trial with diabetes (N = 662%).

Enalapril Placebo Generalized
(N =319) (N = 343) Cox PH Logrank Wilcoxon

Endpoint Yes No Yes No HR P-value P-value
Death 137 182 145 198 0.99 0.91 0.76

Hospitalization 94 225 148 195 0.60 < 0.0001 < 0.0001
TTF 174 145 229 114 0.71 0.0007 0.0007

*One of 663 diabetic subjects was excluded due to missing hospitalization event time.
TTEF, time-to-first hospitalization or death.

7. Discussion

We considered a new two-sample test for bivariate time-to-event outcomes that relied on a ranking accord-
ing to a clinical severity function. The proposed test has an advantage over the traditional time-to-first
approach in that it can incorporate information on the complete clinical history of the patient. Addition-
ally, if the time-to-first endpoint is a composite across events of disparate severity, ignoring this disparity
can be misleading, particularly if there is an inconsistent treatment effect across these endpoints [22,23].

In the examples we considered, the true endpoint of interest (survival) determined the clinical sever-
ity when it was observed. We saw that the proposed method had the nice property of increasing power
to detect treatment benefit when there was an independent effect of treatment not captured by the surro-
gate and dampening this power when the treatment was less efficacious, or even harmful, for the survival
endpoint. Additionally, the developed method allowed us to summarize patient severity considering both
a positive surrogate (i.e., sputum conversion) and a detrimental true endpoint (i.e., death), a setting
for which the traditional time-to-first endpoint did not make sense. The proposed test could be readily
extended to consider other possible functions for the severity, as appropriate for the clinical setting. In
some settings, the relative severity of different events may not be as straightforward. One could similarly
perform a sensitivity analysis of different severity scores to see how the different test results agreed with
expert evaluation of overall benefit. Although simplistic, such composite endpoints can be valuable aids
in a complex decision process. Freedman er al. [24] suggest that the more complex the decision process
becomes, the more decision bodies seem to prefer an objective rule to balance the weight of evidence.

The proposed score test relies on an NPMLE estimator for the bivariate survival distribution. This
NPMLE is actually an equivalence class of functions defined by the probabilities assigned to the maximal
intersection of the observed event regions. One analytic concern is that in some cases, there will not be a
unique solution to the optimization problem that determines the probability assignments that maximize
the likelihood. This type of distributional non-identifiability has been noted previously for the bivariate
NPMLE. In our data example and numerical simulations, we found no examples of this non-uniqueness.
Should this kind of non-identifiability arise in a real data example, one could do a sensitivity analysis
or randomly choose among the NPMLEs, which would provide a valid test. An alternate solution would
be to consider a parametric estimator for the bivariate survival function. Our proposed score test was
presented for the two-sample case; however, it can be easily extended for the k-sample case by similarly
adapting the usual log rank test for this setting.

In many disease settings, survival or cure are often of interest but are too impractical as primary end-
points. Surrogates are commonly selected as primary endpoints to enable trials to be of reasonable size
and duration, particularly for early-phase trials. We proposed a novel test statistic for treatment efficacy
that incorporates the relative severity of a surrogate and true endpoint of interest. The severity function
approach is adaptable to many settings, as it can summarize not only disease severity across multiple
event times but could also be used to assess treatment utility or account for quality of life. This method
provides a useful alternative to the usual time-to-first event in settings where both event types are expected
to occur during the trial. It may also be useful as a supportive composite outcome in a trial for which the
primary outcome remains a traditional time to first endpoint.
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