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Abstract
Survey calibration (or generalized raking) estimators are a standard approach to the use of
auxiliary information in survey sampling, improving on the simple Horvitz–Thompson estimator.
In this paper we relate the survey calibration estimators to the semiparametric incomplete-data
estimators of Robins and coworkers, and to adjustment for baseline variables in a randomized
trial. The development based on calibration estimators explains the ‘estimated weights’ paradox
and provides useful heuristics for constructing practical estimators. We present some examples of
using calibration to gain precision without making additional modelling assumptions in a variety
of regression models.

1 Introduction
Calibration of weights (also known as G-calibration and generalized raking) and the closely-
related generalized regression (GREG) estimation are a family of techniques that use
population data on auxiliary variables to improve estimates in sample surveys(Deville et al.,
1993; Deville and Särndal, 1992; Särndal et al., 2003; Särndal, 2007). These estimators are
closely related to the augmented inverse-probability weighted (AIPW) estimators of Robins
et al. (1994), but their development from regression estimators of the population total
appears to be easier to understand.

Although calibration estimators are widely used in large-scale complex surveys and AIPW
estimators are an important part of modern biostatistics, the connections do not appear to be
widely known. For example, the ISI Web of Science database does not list any paper that
cites both Robins et al. (1994) and either of Deville et al. (1993) and Deville and Särndal
(1992). In this paper we aim to explain the connections between these research programmes.

In section 2 we describe survey calibration estimators, relate them to AIPW estimators, and
show how they illuminate the ‘estimated weights’ paradox. We then discuss four practical
examples in more detail. In section 3 we use a potential-outcomes framework to relate
estimating weights by calibration to the more familiar paradigm of adjusting for baseline
variables in a randomized trial. In section 4.2 we construct calibration estimators for the
case-cohort design and show that the calibration approach gives new and useful insights into
the modelling of auxiliary variables. In section 5 we describe calibration estimators for a
measurement error problem in survival analysis, and in section 6 we use calibration to
increase the efficiency for estimating a gene–environment interaction in a case–control
genetic association study.
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These examples all use known sampling probabilities. Calibration estimators, like AIPW
estimators, are also often used for missing data with estimated sampling probabilities. In this
paper we do not address issues of model choice when estimating probabilities of
missingness — with missing data the precision gains we describe here are typically dwarfed
by the unknown residual biases, and precise analysis is much more difficult.

2 Calibration estimators

Regression estimation of a total—The prototypical calibration estimator is the
regression estimator for a population total (eg Cochran (1977)). Suppose a sample of size n
is taken from a population of size N. The sampling probability πi for each individual is
known and an indicator variable Ri indicates whether individual i is sampled. It will be
important to make asymptotic approximations in some of the equations that follow. We will
take the simplest possible asymptotic framework, where the population of size N is an iid
sample from an infinite superpopulation, with n → ∞ and N/n → C ∈ (0, ∞] (eg Isaki and
Fuller (1982)). The arguments that we use can also be developed under less restrictive
asymptotics, eg Krewski and Rao (1981), where a suitable law of large numbers and central
limit theorem are available.

The target of estimation is the (non-random) population total of a variable y,

and we observe yi only for individuals in the sample. The Horvitz–Thompson estimator of T
is

Since E[Ri] = πi it is immediate that this estimator is unbiased and in the absence of further
information the Horvitz–Thompson estimator would be used in practice.

In addition to observing y, we may also have information on a p auxiliary variables xi for all
i = 1, …, N in the population. The regression estimator T̂reg of T is constructed by
estimating the first-order relationship between y and x from the sample data. Using the n
individuals with Ri = 1 we define X as the n × (p + 1) matrix with rows (1, xi) for i: Ri = 1,
Y as the n-vector with elements yi, and W as the n × n diagonal matrix with entries 1/πi. We
then compute the inverse-probability weighted estimate of the population least-squares
coefficients as

The regression estimator T ̂reg is now defined as
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(1)

As the design matrix X contains an intercept, the first term in equation 1 is identically zero
and the estimator reduces to the sum of the fitted values. The reason for retaining the first
term is to make the decomposition clearer, and in particular to consider what happens when
the true population regression coefficient is substituted for the estimate β̂.

Defining β0 as the vector of coefficients for a population least-squares regression of y on x,
the parameter that β̂ estimates, and ρ2 as the proportion of variance explained in this
population regression, we have

(2)

The second term in this expansion is constant, the first term has variance (1 − ρ2) var [T̂],
and the third term, relating to error in β̂ is of smaller order than the first two. Ignoring the
third term, the variance has been reduced by a factor of (1 − ρ2). The regression estimator
T̂reg is thus more efficient than T ̂ for large enough n unless the variables xi are uncorrelated
with yi so that ρ = 0. Although T ̂ reg is not unbiased, the sum of the first two terms is
unbiased. The third term is of smaller order than the first two terms so the bias is negligible
for fixed p and large n (Cochran, 1977; Särndal et al., 2003)

The lack of bias and the reduction in variance do not rely on any model assumptions linking
x and y, but do rely on the regression being estimated in a probability sample of the
population for which T is being estimated. When β̂ is estimated on a probability sample of
the population and using the correct sampling weights, it estimates the population least
squares coefficient, for which the population mean residual is zero by definition. Estimating
β̂ in a separate population could lead to a regression estimator with non-negligible bias or
increased variance.

Calibration of weights—The next step in linking the regression estimator to AIPW
estimators is to note that the weighted least-squares estimator β̂ is a linear function of the
sampled yi, and so it must be possible to write the regression estimator as

where gi depends on x and π but not y. An explicit form for g is

(3)

where Tx and T̂x are the known population total for x and the Horvitz–Thompson estimator
of this total respectively.
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Although this computation is elementary, we found it surprising that the same 1 − ρ2

reduction in variance obtained by taking residuals can also be obtained merely by
adjustments to the weights, especially as these adjustments are small when n is large and Tx
is close to T̂x.

Since the gi do not depend on y they would be the same if yi = xi, and in that case the
regression estimator is obviously exact, so we must have

(4)

Equation 4 can be used as an alternative definition of g. That is, given a loss function d( , )
for changes in weights, choose gi to minimize

subject to the constraint that equations 4 are satisified (Deville and Särndal, 1992). The
regression estimator results from the loss function d(a, b) = (a − b)2/b. Other loss functions
are used to give upper and lower bounds on the calibration weights gi. For example, the loss
function

gives non-negative weights and for discrete auxiliary variables is equivalent to the classical
raking adjustment.

Estimated weights—Another way to construct adjusted weights, as recommended by
Robins et al. (1994), is to fit a logistic regression model to predict Ri from xi. Writing pi for
the fitted probability, the estimating equations for this logistic regression model can be
written as

(5)

Noting that 1/pi plays the role of the calibrated weights gi/πi we can rewrite this as

This is similar to the calibration equations (4), but has the weights on the left-hand side
rather than the right-hand side. If the model is saturated, the two sets of equations are
identical and simply equate observed and expected counts in a set of strata defined by x.
Even when the model is not saturated, the estimators obtained are typically very close.
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Equation 5 has the advantage that the weights gi always exist and are always non-negative.
From a survey sampling viewpoint this is outweighed by the disadvantage that all the
individual xi are required, in contrast to calibration, which requires xi only for the sample

and in addition the population total .

The paradox—The connection between the regression estimator of a total and weighted
sums using calibrated weights helps illuminate the ‘estimated weights’ paradox. Even
though we have assumed πi to be known, adjusting the weights from 1/πi to gi/πi or 1/pi
gives an estimate of T with reduced variance. That is, using estimated weights rather than
known weights reduces variance. Although there is no difficulty is showing that this result is
true, using projection arguments (Henmi and Eguchi, 2004; Pierce, 1982), it has widely been
regarded paradoxical. Heuristically, it seems that their should be some loss of information
from estimating additional parameters, and the geometrical arguments based on projections
do not seem to remove the sense of paradox for many statisticians.

We can explain the paradox in a different way by comparing the regression estimator in
equation 2 to a similar decomposition of the Horvitz–Thompson estimator

(6)

The first term in equations 6 and 2 is the same. The second term uses the known population
total of x in equation 2 and an estimated total in equation 6. The third term in equation 2 is
not present in equation 6 and represents the uncertainty due to estimation, based on β̂ − β0.

Estimating the weights does introduce error, in the third term, but the introduced error is of
smaller order than the gain in precision that comes from replacing the estimated total of x
with the known total. For large enough n and N, T ̂reg will always be at least as efficient as T̂.
In finite samples the estimation uncertainty need not be negligible. Judkins et al. (2007)
develop a second-order approximation for the variance when x is discrete, confirming that
the uncertainty from estimating β will be important if ρ2 is small and the dimension of β is
large. Henmi and Eguchi (2004) discuss the tradeoff in a general model-based setting, using
projection arguments.

A useful analogy for biostatisticians is to adjustment for baseline variables in a randomized
trial. Although the sampling distributions of all baseline variables are equal in the arms of a
randomized trial, and adjustment for baseline requires additional parameters to be estimated,
it is still possible to realize useful gains in precision. As section 3 shows, this analogy is
exact if randomization is viewed as random sampling from a population of potential
outcomes.

2.1 Two-phase studies and parameter estimates
The previous discussion focused on estimating the population total of an observed variable.
To link this to the problem of semiparametric estimation with incomplete data we need two
further steps.

The first step is to note that yi can be replaced by an estimating function Ui(θ), and that
under suitable regularity conditions the solution to
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is a consistent, asymptotically Normal estimator (Binder, 1983) of the parameter θ0 defined
by the population estimating equations

Analogous theory for calibration estimators of estimating functions is given by Rao et al.
(2002). Breslow and Wellner (2007) discuss the more subtle asymptotic theory needed for
the Cox model.

The regression estimator can also be rewritten

and when yi is replaced by Ui(θ) we have the form of the AIPW estimator of Robins et al.
(1994). In their notation

where Di are the estimating functions and φi is a p-vector of arbitrary functions of the data
that are available for all N observations.

A minor difference between the AIPW formulation and the calibration formulation of these
estimators is the explicit presence of β̂. The only impact of this difference is to rule out
perverse choices of φi that are, for example, negatively correlated with the estimating
functions. In practice, a tuning parameter similar to β would be included in the choice of φ
in an AIPW estimator.

The second step in linking this discussion to the semiparametric missing data problem is to
introduce a prior phase of sampling, so that the observations i = 1, 2, …, N are themselves a
random sample from an actual population or a hypothetical superpopulation. In most
biostatistical applications this first-phase sample is either a cohort or a large case–control
sample in which an unweighted estimating equation
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is appropriate. Details of calibration in two-phase samples are discussed by Särndal et al.
(2003) and when auxiliary information is available only on the first-phase sample the
equations are the same as discussed in the previous section.

2.2 Regression and calibration for estimating functions
While the equivalence of regression and calibration for estimation of population totals and
means has long been known in the survey statistics literature, the fact that this equivalence
extends to more complex statistics when applied to estimating functions does not seem to be
well-known, although the relationship between AIPW and calibration estimators has been
previously noted by Robins and Rotnitkzy (1998).

Särndal’s Waksberg Lecture (Särndal, 2007) used an example from Estevao and Särndal
(2004) of estimating a subpopulation total to illustrate that regression estimators of the form
familiar in survey analysis were not always equivalent to calibration.

Suppose we are interested in estimating the total of Y over a subpopulation . Without
auxiliary information the estimator is

where D is the indicator variable for membership in . If auxiliary variables X were
available and the population total for XD were known, an improved regression estimator
would be

where β̂ could be estimated by a regression over the sampled members of the subpopulation
or (trading bias and variance) by a regression over the whole sample. This regression
estimator is exactly the same as a calibration estimator using XD as auxiliary variables.

Suppose, however, that population data is not available on membership in  but is available
for a closely related subpopulation  (perhaps overlapping, perhaps a subset). Let  be the
indicator variable for membership in  and suppose that the population total is known for

.

Estevao & Särndal argued that generalizing the regression estimator to this problem would
give an estimator

where β̂ might be estimated on  ∪  or, attempting to borrow strength, on all of . A
calibration approach would use  as auxiliary variables to give an estimator
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Estevao & Särndal show that  and  are not the same and that  is more
efficient. Särndal uses this example to contrast ‘regression thinking’, or modelling the mean,
with ‘calibration thinking’, or standardizing the distribution of auxiliary variables.

The two approaches can be unified by thinking of the estimation problem as estimating the
population total of the influence functions, which up to a scale factor are DiYi − E[DiYi].
Regression of these estimating functions on X is equivalent to regression of DiYi on X,
which is equivalent to calibration on X. ‘Calibration thinking’ is ‘regression thinking’
combined with ‘influence function thinking’.

2.3 Efficiency
As noted above, the class of calibration estimators does not quite include the entire class of
AIPW estimators. The classes would be identical if β were fixed rather than estimated, and
estimating β gives asymptotically the same estimator as fixing β at its optimal value. That is,
the calibration estimators include all the best AIPW estimators.

The optimal choice for a calibration variable is the conditional expectation of Ui(θ0) given
the phase-one data. This depends on the unknown θ0, requiring an iterative procedure that
alternates between estimating θ and constructing new calibration variables based on the
estimate. It is often difficult both analytically and computationally to work out the optimal
calibration variables, as discussed in section 2.7 of RRZ. In practice, a reasonable
approximate choice may give almost the same efficiency as the optimal choice, with much
less effort.

Even with the optimal choice of functions φ, the class of AIPW estimators, and thus of
calibration estimators, need not include the semiparametric efficient estimator. For example,
suppose the first phase is simple random sampling of N individuals to measure a binary
outcome y and the second phase is case–control sampling to measure predictors z. Under the
model

(7)

logistic regression is efficient for estimating θ, and is not equivalent to any AIPW estimator.

On the other hand, if we do not assume that equation 7 holds exactly, we could still define
the target parameter as the result that would be obtained by logistic regression if full data
were available on all N individuals, ie, the solution to the population likelihood equations

(8)

In this particular example of case–control sampling, Scott and Wild (2002) give a very
detailed discussion and comparison of the design-based (equation 8) and semiparametric-
efficient (equation 7) estimators. Although they conclude that the semiparametric-efficient
estimator is preferable, their arguments are specific to this model and design.
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RRZ showed that the class of AIPW estimators contains (up to asymptotic equivalence) all
regular asymptotically linear estimators consistent for this design-based target parameter.
We can thus describe AIPW or calibration estimators as asymptotically efficient in the non-
parametric outcome model, or as asymptotically efficent among design-based estimators.

3 Randomization, adjustment, and potential outcomes
Consider a two-group randomized trial, in which a baseline variable X is measured, N/2
participants are randomized to each of treatments A or B, and then an outcome Y is
measured. The summary of interest is the average causal effect of treatment on Y. This can
be estimated either as the difference in mean of Y between the treatment groups or as the
coefficient of a treatment term in a regression model for Y: if treatment is coded Z = −1 for
A and Z = −1 for B we have

where δ/2 is the average causal effect of randomization to treatment. The obvious and
standard estimator of δ/2 is the difference in means between treatment A and treatment B

Using the potential-outcomes formulation of causation (Pearl, 2000) we can consider the
randomized trial as a sample from a finite population. In the finite population, each
participant i has two potential outcomes: Y(A)i if assigned treatment A and Y(B)i if assigned
treatment B. The randomization process samples one potential outcome for each participant.
The use of randomization to assign treatments guarantees that the sampling probabilities are
independent of the potential outcomes and of X. Under 1:1 randomization these sampling
probabilities at the second phase are 1/2 for each potential outcome. The observed value of
Y is the one for the assigned treatment Zi, namely Yi = Y(zi)i,

The treatment effect for an individual is Y(A)i − Y(B)i = Σz Y(z)iZi, so the average treatment
effect is the population mean of Y Z, where the expectation is taken over the two treatments
and potential outcomes for each individual. The Horvitz–Thompson estimator δ̂HT of δ is a
probability-weighted sum of Y Z over the observed outcomes and treatments. This reduces
to the group difference in means

When additional baseline variables X are available the treatment effect can be estimated by
a regression of Y on X and Z, fitting the model
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(9)

For notational simplicity we consider only univariate X, but exactly the same arguments
apply for multivariate X. The baseline-adjusted estimator δ̂reg satisfies the Normal equations

This estimator δ̂reg is more efficient than the difference in means between treatment groups.
If X and Y are highly correlated the efficiency gain can be large. Because Z is randomly
assigned and independent of X the regression estimator is unbiased for δ regardless of
whether the regression is correctly specified; a misspecified model just leads to a smaller
gain in efficiency.

An alternative way to use baseline variables X is by calibrating the sampling weights. In the
first-phase sample each individual appears once in each treatment group, so the sample
mean of XZ is identically zero. In the observed sample there will be small imbalances in X
between treatment groups, so that the Horvitz–Thompson estimator of the mean of XZ is not
exactly zero.

When we calibrate on XZ to the first-phase sample the calibration constraints (4) are

ie, perfect balance in the mean of X across treatment groups. In fact, we will calibrate to S =
(XZ, Z, 1), where the calibration on (1, Z) ensures that the sum of the weights stays equal to
2N and the mean of Z stays equal to zero. These additional conditions result in the calibrated
estimator being algebraically equal to δ̂reg, calibrating only on XZ gives an asymptotically
equivalent estimator. We will use of the equivalence between the calibration estimator and
the survey regression estimator in equation 1. We write (α0, α1, α2) for the regression
coefficients in equation 1. These satisfy the weighted least-squares equations

Using the fact that Zi = 1/Zi and , we can rewrite this as
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which are the least-squares equations for the model in equation 10, with α0 = δ, α1 = μ and
α2 = β, so α̂0 = δ̂reg.

According to equation 1, the calibration estimator for the total of Y Z is

where T is the population total of the predicted values. The first term is zero, from the
definition of α, an unusual special case that occurs because the sampling weights are
constant. The second term T expands to

Since the sums of ZiXi and Zi are identically zero over the potential-outcome population, T
simplifies to

and so δ̂cal = δ̂reg.

We have already seen that the calibration estimator is consistent and provides efficiency
benefits whether or not the relationship between Y and X is truly linear. Similarly, when
estimating the mean difference in randomized trials, adjustment for pre-randomization
measurements is known to give a consistent estimator without regard to the accuracy of the
model, and to give an increase in large-sample precision when the baseline variables are
correlated with the trial outcome. We can see that these ‘free lunch’ improvements in
precision without the need to make additional assumptions arise for exactly the same
reasons.

When applied to treatment effect estimates other than the difference in means, such as the
hazard ratio from a Cox model, the calibration estimators are not identical to adjusting for
baseline covariates. Adjustment for baseline covariates changes the target of inference from
a marginal hazard ratio to a conditional hazard ratio; calibration provides more precise
estimation for the same target of inference. The increase in power for testing the null
hypothesis of no treatment difference is similar for calibration and adjustment estimators.

Semiparametric estimators for randomized trials equivalent to the calibration estimators
have recently been proposed (Zhang et al., 2008; Tsiatis et al., 2008). The motivation for
these estimators was an increase in precision without changing the target of estimation, the
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same goal that motivates calibration estimators. Tsiatis et al. (2008) made the interesting
observation that the optimal estimator in this class can be constructed by choosing auxiliary
variables separately in each treatment group, blinded as to treatment. Separating the
treatment groups in this way means that the analyst who chooses the auxiliary variables
cannot be influenced by the impact that model choice has on the estimated treatment effect.

3.1 Simulation
We present a simple simulation to verify that δ̂cal and δ̂reg are identical in this randomized
trial setting and to examine the impact of estimating weights by logistic regression instead of
by calibration.

The data are 1000 observations generated as Y = 2X + Z + ε, where X, ε ~ N(0, 1) and Z
alternates between 0 and 1. For each of 500 simulations we compute the simple difference
estimator δ̂; the Horvitz–Thompson estimator δ̂HT; the regression estimator adjusted for X;
δ̂reg; the calibration estimator δ̂cal; and a weighted mean estimator with inverse-probability
of treatment weights estimated by logistic regression as in equation 5, δ̂IPTW. Table 1
summarizes the results.

As expected, the difference and Horvitz–Thompson estimators agree to within machine
precision, as do the regression and calibration estimators. We would not have expected the
IPTW estimator using logistic regression to agree to machine precision, but it does agree
with the regression and calibration estimators to four digits, or less than 1% of a standard
error. The closeness of the agreement between δ̂cal and δ̂IPTW in this example occurs
because the fitted values in the logistic regression are close to 0.5, within the region where
the logit link function is approximately linear.

4 Regression coefficients, influence functions, and calibration
4.1 Calibration in fitting linear regression models

The efficiency gain in calibration for a population total depends on the (linear) correlation
between the calibration variables and the variable whose total is being estimated. For
estimates more complex than a total it is useful to consider a representation using influence
functions. Consider fitting a linear regression model to an independent sample of n
observations (xi, yi) from a distribution satisfying

The least-squares regression estimator β̂ of β is

By the Law of Large Numbers the matrix inverse is approximately constant, so β̂ is
approximately a population mean of independent and identically distributed terms. More
precisely,
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so β̂ is asymptotically equivalent to the population mean of the influence functions

Since β̂ is approximately a mean of influence functions, calibration will be most effective
when the calibration variable is highly correlated with the influence functions. The same
conclusion holds under complex sampling from a finite population, or two-phase sampling.
Finding calibration variables highly correlated with  can lead very different choices from
finding calibration variables correlated with X or Y.

As an example we consider socioeconomic and academic performance data on schools in
California, made available by the California Department of Education and subsequently
distributed as a teaching example by UCLA Academic Technology Services. These data can
be obtained from http://www.ats.ucla.edu/stat/stata/Library/svy_survey.htm or from the R
survey package. We will use the apiclus1 data set, which is a cluster sample of all the
schools in 15 school districts. The calibration analysis of this example is taken from Lumley
(2010).

We fit a regression model where the outcome is the Academic Performance Index for the
school in the year 2000 (api00). As predictors we have the percentage of students who are
‘English language learners’ (ell), the percentage of students who are new to the school that
year (mobility), and the percentage of teachers with only emergency teaching qualifications
(emer). That is

We assume that the three predictor variables are known for all schools in the state, and that
the previous year’s Academic Performance Index (api99) is also known for all schools in the
state. Individual-level calibration information of this sort is unusual in national population
surveys, but is commonplace in two-phase subsampling designs. Since the correlation
between the two years of Academic Performance Index is 0.975, we should have almost
perfect auxiliary information for calibration. One approach is to use the variables ell,
mobility, emer, and api99 as calibration variables. Another is to fit an auxiliary model

to the complete population data and use its influence functions as calibration variables. The
upper left panel in Figure 1 shows the strong linear relationship between 1999 and 2000 API
in this data set. If we wished to estimate the mean of 2000 API it is clear that 1999 API
would be a valuable auxiliary variable. The remaining three panels have the influence
function for the second element of β̂, the coefficient of ell, on the y axis. A strong linear
relationship would indicate a useful auxiliary variable for estimating this regression
coefficient. The upper right and lower left panels show that api99 and ell are very poor
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auxiliary variables for estimating the regression coefficient. The correlations are −0.09 and
−0.05 respectively. The x axis in the lower right panel is the influence function for the
second element of β̂ in the auxiliary regression model. The correlation in this panel is 0.88.
These graphs confirm that calibration using the raw predictor or outcome variables, or
proxies for them, is not an effective way to increase precision in a regression model. Instead,
an effective strategy may be to construct an analogous model based on the auxiliary
information and use the influence functions from that model in calibration.

Table 2 shows the results. Calibration just using the variables api99, ell, mobility, and emer
gives a substantial reduction in the intercept standard error, but has relatively little impact on
the standard errors of the slope estimates. Calibration using the influence functions further
reduces the standard error of the intercept and reduces the standard errors of all the slope
parameters by a factor of 2–3. This example is taken from Lumley (2010) and the code for
all the computations is available at http://faculty.washington.edu/tlumley/svybook/.

4.2 The case–cohort design
Cox regression estimators based on unequal probability subsampling of a large cohort have a
long history in the case–cohort design. In the case–cohort design the first phase of sampling
is a cohort of size N. The second phase consists of a random subcohort augmented by adding
all individuals who experience an event. The initial development of the design and
estimation (Prentice, 1986; Self and Prentice, 1988) was based on martingale arguments and
did not make use of auxiliary information. A survey-sampling approach to the Cox model
was proposed by Binder (1992) and more rigorously developed by Lin (2000) and Breslow
and Wellner (2007). Auxiliary information was incorporated as weights by Borgan et al.
(2000), Kulich and Lin (2004), Mark and Katki (2006) and others. The semiparametric-
efficient estimator has been constructed by Nan (2004), but it is difficult to compute and no
implementation is currently available.

Using standard survival notation we write Zi(t) for the possibly time-varying covariate
vector for individual i and Ni(t) for the survival counting process. The hazard λ(t; zi(t)
follows the proportional hazards model

so that the parameters β are log hazard ratios for a one-unit difference in z. We assume that
Zi is available only for individuals in the case-cohort subsample, ie, where Ri = 1.

The Horvitz–Thompson estimator for β (Binder, 1992; Lin, 2000) solves

If, in addition to Zi measured for i in the subsample we have auxiliary variables Z* measured
for i = 1, 2, …, N, we can improve precision with a calibration estimator. It is clear from the
construction of the regression estimator in equation 1 that the ideal calibration variables
would be highly correlated with Ui(β), the variable whose total is being estimated. The
optimal choice is the conditional expectation of Ui given phase-one data, but this is unlikely
to be tractable.
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A popular choice for the related problem of estimating weights with logistic regression is the
raw variables . These are unlikely to be good calibration variables as they are unlikely to
be strongly correlated with Ui. Suppose that Zi and  are one-dimensional, not time-
varying, and highly correlated. If the proportional hazards model is correctly specified,
E[Ui(β)|Zi(0) = zi] = 0, so Ui is uncorrelated with Zi and will be at most weakly correlated
with .

As in the previous example, a better candidate for a calibration variable would be an
influence function for the same hazard ratios but from an auxiliary model based on  rather
than Zi. That is, where Zi is not available, we impute it from . We then fit the Cox model

to the imputed data set, and use the influence functions for this model as calibration
variables. Typically there will be substantial overlap between Zi and , with only a few
variables (or even one) that are truly restricted to the case-cohort sample, so the modelling
needed for imputation is not unduly burdensome. It would be possible just to use γ̂ instead
of β̂, but this runs the risk that inadequacies in the imputation model could cause serious
bias. By using the auxiliary model to construct calibration variables it is possible to benefit
from an accurate imputation model without the risk of bias from a poor imputation model.

Breslow et al. (2009) used this approach to analyze data from the National Wilm’s Tumor
Study Group, previously presented by Kulich and Lin (2004), and confirmed that calibration
or estimating weights using raw phase-one variables was of little benefit and that substantial
precision gains were available from calibrating to phase-one influence functions.

5 Model calibration for mismeasured covariates
Several estimation methods have been developed for Cox regression with mismeasured
covariates. Perhaps the most practically successful of this is due to Prentice (1982), a
method that unfortunately is also called ‘regression calibration’ and that we will refer to in
this paper as Prentice’s method, to avoid ambiguity of names. This is a straightforward but
approximate first-order correction that would give consistent estimation for linear regression
but has some asymptotic bias for the Cox model. Consistent methods, such as the
conditional score (Tsiatis and Davidian, 2001) and corrected score (Nakamura, 1992; Huang
and Wang, 2000, 2006), have also been worked out.

We assume that the true Cox model for the hazard λi(t) of an individual is

where we call Zi the true exposure. Zi is observed with some measurement error. Until
recently, statistical methods have assumed that an observed exposure W follows the classical
measurement error model
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where the errors εi are iid with zero mean and are independent of all other variables. Some
methods require the additional assumption that ε has a Normal distribution.

In nutritional epidemiology, nutrient intakes are typically assessed through self-reported
questionnaire data. The reporting error in these instruments is large enough to potentially
obscure associations between diet and chronic disease in cohort studies (Willett, 1998;
Kipnis et al., 2003; Schatzkin and Kipnis, 2004). However, it is well-established that the
mean and variance of the measurement can depend on Z and on other covariates, so that
classical measurement error models are not sufficient. Building on the work of several
others (Prentice, 1996; Carroll et al., 1998; Jiang et al., 2001; Kipnis et al., 2001), Prentice et
al. (2002) proposed a measurement error model for self-reported dietary assessment data.
This model consists of both systematic and random error and allows for repeated
measurements. We write

for the self-reported exposure and note that E[ηit] and var[ηit] will typically depend on Zi
and on other covariates.

In the presence of systematic error, it not possible to estimate dietary intake or its associated
hazard ratio consistently from replicate measurements. It is also unreasonable to assume that
perfect validation measurements are available. A weaker assumption is that a measure of Z
with classical measurement error is available on a subset. In nutritional epidemiology such a
measure might arise from recovery biomarkers (Kaaks et al., 2002) such as urinary nitrogen
to estimate protein intake (Bingham and Cummings, 1985), the doubly-labelled water
estimate of energy expenditure (Schoeller and van Santen, 1982), or calorimetry for resting
energy expenditure. Due to expense, these measures are typically not available on the entire
cohort under study. Adapting regression calibration to this setting is relatively
straightforward and gives good precision, but with some bias (Shaw, 2006). Shaw (2006)
also showed how the conditional score and corrected score could be adapted to non-classical
measurement error giving reduced bias but substantially increased variance and some
numerical instability. A semiparametric efficient estimator is not known, and does not
appear easy to construct.

If the event rate in this subset is high enough, another approach to estimation is to use the
non-parametric corrected score estimator (Huang and Wang, 2000) on the biomarker subset
and to use the estimating functions from the Prentice (1982) first-order corrected estimator
as calibration variables. The Huang and Wang (2000) estimator weakens the necessary
distributional assumptions to require only that ε is mean zero and independent of the
unobserved Z, which is thought to be reasonable for these biomarkers.

Our simulations compare the Prentice first-order estimator based on the whole cohort to the
Huang & Wang estimator on the biomarker subset, calibrated with the estimating functions
from the Prentice first-order estimator on the whole cohort. These simulations involve a
Normally distributed true exposure. In the validation subset, this exposure is observed with
classical measurement error as the validation biomarker. In the whole data set the exposure
is also observed as three repeated measurements of a self-reported exposure. This self-
reported exposure has both bias for each individual and independent measurement error
around this biased value having mean and variance which depend on a binary grouping
variable, following Prentice et al. (2002). R code for generating the self-reported exposure
variable Qit is in the Appendix. The validation subset is 500 observations out of a total of
5000, and censoring is at a single time point with a censoring rate of 35%.
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Table 3 shows the results of simulations for three real estimators: the calibration estimator
based on the corrected score, the corrected score estimated just from the validation subset,
and Prentice’s estimator. These are also compared to an estimator that ignores the
measurement error. There are four simulation scenarios, comparing moderate (β = log 2) and
large (β = log 4) covariate effects and moderate or large exposure error. The bias, standard
error, and squared error of the large-sample distributions are estimated by the median of the
simulated β̂, the median absolute deviation of β̂, and the square root of the median squared
error, since the estimators need not have finite moments at finite sample size and so the
sample simulated moments may be misleading.

The simulations show that the calibrated corrected score estimator is competitive with the
Prentice estimator in squared error, with lower bias. The calibrated corrected score is always
superior to the uncalibrated corrected score, though there is only one scenario where the
improvement is large. All three estimators are vastly superior to ignoring the measurement
error. The gain in information from observations outside the validation subset is
disappointingly small when the error is large. It is not clear how much this is a deficiency in
the estimator, since an efficient estimator is not known. In contrast to Prentice’s estimator,
the calibration approach does require that the event rate in the validation subset is
substantial, either because the overall event rate is high or because the calibration subset is
chosen to include high-risk individuals.

6 Gene–Environment interaction
Calibration is also possible when the constraints are provided by substantive knowledge
about the data-generating process rather than observed population data. An example comes
from studies of gene–environment interaction in genetic epidemiology and pharma-
cogenomics.

As an example we consider a study by Psaty et al. (2002). The Gly460Trp mutation in the α-
adducin gene has been linked to salt-sensitive hypertension in both animal and human
studies. Theory, and experiments in animals, suggest that this form of hypertension might be
more responsive to thiazide diuretics than to other blood pressure drugs. Psaty et al.
collected data on the α-adducin genotype and medication use for treated hypertensives who
had heart attack or stroke and for controls, and fitted a logistic regression model

where Y = 1 is an indicator for case status, G is an indicator for a carrier of the variant form
of α-adducin and D is an indicator for treatment with diuretics. They found exp(γ) = 0.53,
confirming the hypothesis. The data are in table 4

It is plausible in this case that D and G are independent, since physicians do not know the α-
adducin genotype of their patients. If they are independent, then a case–only analysis
((Piegorsch et al., 1994)) is also possible and is more efficient. We write nGDY for the
number of observations with G = 1, D = 1, and Y = 1; ngdy for the number with G = 0, D =
0, and Y = 0; and so on. The interaction odds ratio eγ can then be written as
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If Y = 1 is rare in the population, as it will typically be in a case–control study,
independence of G and D in the population implies independence in controls. This in turn
implies the denominator in the second expression for exp(γ), the gene–drug odds ratio in
controls, is unity.

Under the rare-disease and gene–drug independence assumptions, γ can be estimated by the
case–only logistic regression

This estimator is always more efficient than the case–control estimator; it is as efficient as
the case–control estimator with an infinitely large number of controls per case. For the data
of Psaty et al, the case–control estimator was 0.53 with 95% confidence interval (0.26, 0.79)
and the case–only estimator was 0.45 with 95% confidence interval (0.33, 0.84). The
increase in precision is relatively small in this example as the ratio of cases to controls was
about 1:3, giving an asymptotic relative efficiency of 3/4 for the case–control estimator.

This simple case–only approach is limited to situations where either D or G is binary and
there are no other environmental variables in the model. More recent research has
constructed semiparametric maximum likelihood estimators that have the efficiency of the
case–only estimator but can be applied to arbitrary logistic regression models ((Chatterjee
and Carroll, 2005)). In the rare events setting it is also straightforward to impose the gene–
environment independence assumption by calibration. The resulting estimators are fully
efficient in saturated models and have high efficiency in general models.

The calibration equations for the simple 2 × 2 × 2 table in the α-adducin example are

(10)

where Ḡ and D̄ are the means of G and D in controls. In this simple setting the calibration
weights gi ensure that the gene–drug odds ratio in controls is estimated as exactly zero, the
known population value. The resulting estimate of exp(γ) is exactly the case–only estimate
and the estimated standard error also agrees with the case–only analysis.

The calibration approach extends readily to multiple drugs or doses and to more general
genetic models than the dominant model used by Psaty et al. If G and D are categorical
variables, we have a calibration constraint of the form in equation 10 for each combination
of a category of G and a category of D. If G or D are continuous, we need to specify a finite
set of basis functions such as polynomials or splines and apply the calibration constraints in
equation 10 to the elements of the basis.

7 Conclusions
Survey calibration estimators give a way to construct AIPW estimators that appears to be
more accessible to intuition than the constructions in Robins et al. (1994). In particular, they
provide a simple explanation of the ‘estimated weights’ paradox and give insights into
choosing functional forms when estimating weights.

In the first example of a case–cohort design the efficient estimator is known, although not
straightforward to compute. In the second example the efficient estimator is not known and
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calibration provides a simple estimator with a useful precision–robustness tradeoff. In the
third example of a model with finite codimension, calibration appears to be fully efficient
with rare events and is very straightforward to implement.

Calibration estimators also provide a reasonably general way to combine an inefficient but
design-consistent weighted estimator and a precise but possibly inconsistent model-based
estimator to gain precision without losing consistency. These estimators may be useful in
practice, and also provide a basis for comparison when evaluating more efficient model-
based estimators, in place of the ‘straw man’ Horvitz–Thompson estimator.
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Appendix: generation of exposure error from Prentice (2002) model. Z is
true exposure, V is a binary covariate that affects measurement error (eg
sex)

createQ<-function(nsubj,eta,k,muZeta,sigZeta,Z,V){
## Creates a nsubj by k matrix, where row i contains
## repeat observations for subject i
d0<- 0
d1<- 1.2
d2<- -0.2
d3<- -0.3
a<- 0.5
b<- log(2)
## Gamma -- random effect for person i (for Q)
gamSig <- sqrt(a * exp(b*V))
gam <- rnorm(n=nsubj,mean=0,sd=gamSig)
zeta <- rnorm(n=(k*nsubj),mean=muZeta,sd=sigZeta)
Q <- d0 + d1*rep(Z,each=k) + d2*rep(V,each=k) +
d3*rep(Z*V,each=k) + rep(gam,each=k) + zeta
Q <- t(matrix(Q,ncol=nsubj))
return(Q)
}
‘Large’ error model has muZeta=2, sigZeta=1. ‘Moderate’ error model has 
muZeta=1,
sigZeta=0.5. Both have Z ~ N(0, 1), V ~ Bernoulli(0.5).
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Figure 1.
Auxiliary information for 2000 API and for influence functions. Upper left panel shows
2000 and 1999 API. Remaining three panels show the influence function for β̂ell on the y-
axis, with 1999 API, the predictor ell itself, and the influence function in an auxiliary model
using 1999 data on the x-axes.
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Table 2

Coefficients and standard errors (A) using sampling weights, (B) calibrating on variables, and (C) calibrating
on influence functions

A B C

Coefficients

(Intercept) 780.46 785.44 790.63

ell −3.30 −3.28 −3.26

mobility −1.45 −1.46 −1.41

emer −1.81 −1.67 −2.24

Standard errors

(Intercept) 30.02 13.76 5.84

ell 0.47 0.62 0.13

mobility 0.73 0.66 0.22

emer 0.42 0.37 0.22
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Table 4

Interaction between thiazide diuretics and the α-adducin Gly460Trp polymorphism (Psaty et al, 2000)

G

D 0 1

Case 0 103 85

1 94 41

Control 0 248 131

1 208 128
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