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For time-to-event outcomes, a rich literature exists on the bias introduced by
covariate measurement error in regression models, such as the Cox model,
and methods of analysis to address this bias. By comparison, less attention
has been given to understanding the impact or addressing errors in the failure
time outcome. For many diseases, the timing of an event of interest (such as
progression-free survival or time to AIDS progression) can be difficult to assess
or reliant on self-report and therefore prone to measurement error. For linear
models, it is well known that random errors in the outcome variable do not bias
regression estimates. With nonlinear models, however, even random error or
misclassification can introduce bias into estimated parameters. We compare the
performance of 2 common regression models, the Cox and Weibull models, in
the setting of measurement error in the failure time outcome. We introduce an
extension of the SIMEX method to correct for bias in hazard ratio estimates from
the Cox model and discuss other analysis options to address measurement error
in the response. A formula to estimate the bias induced into the hazard ratio by
classical measurement error in the event time for a log-linear survival model is
presented. Detailed numerical studies are presented to examine the performance
of the proposed SIMEX method under varying levels and parametric forms of
the error in the outcome. We further illustrate the method with observational
data on HIV outcomes from the Vanderbilt Comprehensive Care Clinic.
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1 INTRODUCTION

There are many examples in clinical research where the outcome of interest relies on an imprecisely measured event time.
Researchers studying the epidemiology of chronic conditions may enroll subjects some time after an initial diagnosis, and
so research questions focused on the timing of events post diagnosis may need to rely on patient recall or chart review
of electronic medical records, both of which are subject to error. For example, human biologists and demographers are
interested in the variability in the age at menarche (first menstruation).1 Oftentimes, subjects are enrolled several years
after menarche, and so the event time is based on retrospective recall and hence subject to error. As Holt et al2 observed,
studies comparing age at menarche reported retrospectively to those reported in medical records have shown that dif-
ferences in the two can be attributed to recall error symmetrically distributed around zero. In addition, epidemiological
researchers frequently use observational databases, where data accuracy can also be a concern. In observational studies of
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HIV/AIDS, the event time between antiretroviral therapy (ART) initiation and a disease outcome, such as AIDS-defining
illness and associated risk factors, is often of interest. In prior studies using routinely collected health record data, we have
observed substantial errors, in as many as 30% of patient records, in the time of ART initiation.3,4 Even in studies where a
failure time may be measured precisely, such as time to virologic failure defined by an electronically recorded HIV-RNA
test exceeding a threshold, the error in the baseline time will create error in the time-to-event outcome. Ignoring these
errors can lead to biased estimates of the associations of interest.

There is a rich body of knowledge describing the impact of and methods to correct for covariate measurement error, par-
ticularly for time-to-event outcomes.5 For the Cox model, these methods include approximate methods such as regression
calibration6 and Simulation and Extrapolation (SIMEX).7 They also include methods that have been shown to be unbi-
ased under certain assumptions, including the parametric corrected score,8 conditional score,9 nonparametric corrected
score,10,11 and likelihood methods,12,13 to name a few.

Much less has been written about the effect of or methods for errors in the failure time outcome itself. For continuous
outcomes and linear regression, it is well known that random outcome error does not introduce bias into the regression
coefficients. However, for nonlinear models, simple random error in outcomes can bias the coefficients.5 This has been
well studied in the case of binary outcomes14,15 and discrete failure time data,16 where estimates of sensitivity and speci-
ficity can be incorporated to adjust estimation for the bias induced by outcome misclassification. Errors in outcome that
are correlated with covariates can also be a source of bias in the association between these variables. Some methods, which
adjust for covariate-dependent estimates of sensitivity and specificity, have been presented.17-19

For uncensored, continuous failure time outcomes, Skinner20 found that random multiplicative error has little effect
on the acceleration parameter estimated by a Weibull regression model, particularly when there is a relatively small
measurement error variance. Korn et al21 noticed that the bias in estimating the hazard ratio (HR) is very small with
small random multiplicative measurement error in the failure time. Even with larger random error, the bias was small
when the HR was moderate, as commonly seen in clinical trials. However, Hong et al22 noticed in their statistical models
for progression-free survival, which involved modeling tumor growth and error-prone detection, that multiplicative error
would lead to attenuation of the HR, with larger measurement error leading to greater attenuation.

The SIMEX method was developed by Cook and Stefanski7 to correct additive measurement error in the covariates.
SIMEX has been applied to a wide variety of regression models and is generally implemented as an empirical method.5,23

It has been shown to be a useful tool for estimation in the presence of unbiased covariate measurement error in regression
models for time-to-event outcomes, eg, see Zhang et al,24 He et al,25 and Greene and Cai.26 We extend the SIMEX approach
to address random multiplicative error in the event time and study whether this method can be applied to reduce bias in
the regression coefficients.

In this manuscript, we will present a detailed numerical study of the impact of nondifferential outcome measurement
error on association analyses of failure time data. We provide an approximate formula to estimate the bias in the asso-
ciation parameters induced by random multiplicative error in the event time and examine performance of our proposed
method to correct for the induced bias. In particular, we will consider 2 popular regression models for survival data, Cox
and Weibull regression, and compare the vulnerability of these 2 regression frameworks to bias from error in the event
time. The Weibull model is both an accelerated failure time (AFT) and proportional hazards (PH) model. Thus, within this
modeling framework, we will compare the impact of outcome error on estimation of the HR and acceleration parameters
for different measurement error scenarios.

Section 2 presents the survival time measurement error framework and develops the extended SIMEX method. Then
Section 3 presents numerical studies of the bias on the HR and the acceleration parameter for different measurement error
scenarios and the ability of the adapted SIMEX method to ameliorate this bias. We also discuss estimation options when
there is a validation subset available with which to estimate the error structure. In Section 4, we apply the SIMEX method
in an analysis of HIV outcomes among patients starting ART, where the time-to-event is sometimes recorded incorrectly.

2 SURVIVAL TIME MODEL

We consider the Cox PH model and Weibull parametric regression model to study the effects of random error in survival
time T. The Cox model is given by

𝜆(t) = 𝜆0(t) exp (X𝛽) ,

where 𝜆(t) is the hazard at time t given the p × 1 covariate vector X, 𝜆0(t) is the baseline hazard, and 𝛽 is the vector of log
HR parameters. For the Weibull (AFT) model, one has
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T = exp (𝛼0 + X𝛼1 + 𝜎𝜖) , (1)

where 𝛼0 and 𝛼1 are regression coefficients, 𝜎 is a shape parameter, and 𝜖 is the error term following an extreme value
distribution. The model is also known as a linear transformation model, given by

log(T) = 𝛼0 + X𝛼1 + 𝜎𝜖.

2.1 Error framework
We study the case where there is multiplicative error in the uncensored survival time. Let T′ be survival time measured
with error such that we observe T′ = T × exp(𝜈), where 𝜈 has mean 0, variance 𝜎2

𝜈 , and is independent of T and X. Then
the error-prone survival time on the log scale is given by

log(T′) = 𝛼0 + X𝛼1 + 𝜎𝜖 + 𝜈 = log(T) + 𝜈. (2)

The performance of the Cox and Weibull models in the presence of outcome error, namely, its ability to capture the true
association with X, can be directly compared using the fact that the log HR from the Cox model can also be estimated
from the Weibull model with the following relationship

𝛽 = −𝛼1

𝜎
.

We note that with the linear form for log(T′) above, the extra error term 𝜈 that is independent of the covariate X will
not induce any bias in the acceleration parameter using a typical linear regression model. We also note that the error
equation in (2) has the same mathematical form as a log-linear event time model with an added frailty term, 𝜈. Keiding
et al27 considered the AFT model for the setting of heterogeneity due to omitted covariates or frailties and observed that
there is bias in the Cox model induced by erroneously ignoring an added frailty term 𝜈, whereas there is no expected bias
in the acceleration parameter 𝛼1. These authors also derived an approximate formula for the attenuation factor for the
HR parameter in the Cox model, drawing connections between the log-linear model for the uncensored event time and
the theoretical linear regression of log(T) on X. For further detail, see Keiding et al.27 When adapted to our setting, the
bias in 𝛽naive, the estimated HR from naively applying the Cox model in the presence of the error in (2), is given by the
approximate attenuation factor

𝛾 = 1√
1 + 𝜎−2𝜎2

𝜈

. (3)

That is, 𝛽naive ≈ 𝛽 × 𝛾 .

2.2 SIMEX method
Given the above framework for the survival model and outcome error, we adapt the SIMEX method to adjust estimation
of a regression parameter of interest (eg, the log HR 𝛽). The SIMEX method was originally developed for additive mea-
surement error in the covariates.7 We adapt the SIMEX method by working with the logT, which converts the assumed
multiplicative error to the additive scale.

We illustrate our method using Figure 1. Similar to the original SIMEX method, we estimate the relationship between
the size of the measurement error, 𝜎2

𝜈 , and the bias in the naive estimate of the parameter of interest from an analysis
that ignores the error. In the Simulation step, we add additional measurement error to each outcome by drawing 𝜔 from
N(0, 𝜆𝜎2

𝜈 ) and adding the value of this random variable to the already error-prone variable logT′ and exponentiating to
obtain a new T′

𝜆
. This error addition is repeated B times for a range of values of 𝜆 ≥ 0. Then for each iteration of 𝜆 and

b = 1, … ,B, we refit the regression model with the new vector of error-prone measurement of the survival time T′
𝜆b to

obtain a new naive log HR estimate 𝛽𝜆b (or other parameter of interest, eg, acceleration parameter from the AFT). The
new total measurement error variance in logT′

𝜆b is then given by

𝜎2
𝜈 + 𝜆𝜎2

𝜈 = (1 + 𝜆)𝜎2
𝜈 . (4)

For illustration, we set B = 1 and 𝜆 ∈ { 1
10
,

2
10
, … ,

9
10
, 1, 5

4
,

6
4
,

7
4
, 2} to estimate new 𝛽𝜆1, which are shown as small circles

in Figure 1, and plot these naive 𝛽𝜆1 versus 𝜆. In the Extrapolation step, we then fit a curve to the plot of 𝛽𝜆1 as a function
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FIGURE 1 The quadratic approximations of the 𝛽 parameters as a function of 𝜆, extrapolated to 𝜆 = −1, with the dotted lines denoting the
true 𝛽. A, For 𝛽 = log(1.5). B, For 𝛽 = log(3)

of the 𝜆's. From this fitted model, we extrapolate back to 𝜆 = −1, which given the new total measurement error variance
in Equation 4, should approximate the true coefficient value. For the setting with covariate measurement error, Cook and
Stefanski recommend a quadratic approximation due to good performance in most cases, but other extrapolation func-
tions such as a linear, log-linear, or nonlinear function are possibilities. We investigated the performance of the quadratic
form in our framework using simulations, and it outperformed the linear and log-linear approximations. In Figure 1, this
extrapolation is shown by extending the curve to 𝜆 = −1. Note that, in any data application, one could draw a similar
figure—increasing the denseness of the vector 𝜆 to verify the appropriateness of the chosen extrapolation function (as
quadratic or otherwise). This procedure only yields an approximation, since we can only generate curves for which 𝜆 ≥ 0,
and thus have no estimates on the curve in the region of curve between [−1, 0). To assess the sampling variability of the
SIMEX estimates, we use the bootstrap to obtain standard errors (SEs).

Here, we assume the value of 𝜎2
𝜈 is known. In some settings, an estimate of 𝜎2

𝜈 may be available from a validation study.
In the case that the true value of the measurement error variance, 𝜎2

𝜈 , is unknown and an estimate is not available, one
can apply the method for a variety of possible values for 𝜎2

𝜈 and examine the sensitivity of the estimated 𝛽. In our data
example that follows, we will illustrate the method with an estimated 𝜎2

𝜈 from a validation subsample.
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3 SIMULATIONS AND RESULTS

Through simulation, we examined the bias that results from random multiplicative error in the failure time outcome with
different distributions of errors and evaluated the estimators from both the Cox and Weibull models. We then applied the
proposed SIMEX method to obtain error-corrected estimates of the log HR. These values will be compared to those from
the true model, a Cox PH regression model fit with true times T, and a naive Cox model fit with error-prone times T′. We
present results for varying values of the log HR 𝛽, assumed error distributions, and error variances. From these experi-
ments, we derived means, biases, SEs, and mean squared errors (MSEs). We also compare our observed bias in the HR
with the expected value given by Equation 3. We estimate the HR parameter both parametrically using the Weibull model
and semiparametrically using the Cox model. As we will see from our results below, the multiplicative error introduces

TABLE 1 The percent (%) bias (absolute bias for intercept 𝛼0), average model standard error (ASE),
empirical standard error (ESE), mean squared error (MSE), and coverage probabilities (CP) are given for
2000 simulated data sets with n = 1000 and a mean zero normal distribution for the error term. For all
simulations, the Weibull parameters 𝛼0 = 0, 𝛼1 = −𝛽, and shape equaled 1 (exponential time). Values of 𝛽
and 𝜎2

𝜈 are shown above

Weibull model Cox Model
𝛽 𝜎2

𝜈 𝛼0 𝛼1 Shape 𝛽 𝛽

log(1.5) 0.25 Bias 0.056 0.060 −7.200 −11.84 −15.43
ASE 0.038 0.038 0.020 0.035 0.033
ESE 0.039 0.040 0.000 0.036 0.035
MSE 0.069 0.040 0.072 0.060 0.072
CP 0.676 0.969 0.000 0.708 0.522

0.5 Bias 0.108 −0.210 −16.04 −20.34 −24.97
ASE 0.042 0.044 0.016 0.035 0.033
ESE 0.042 0.044 0.000 0.036 0.033
MSE 0.116 0.044 0.160 0.090 0.107
CP 0.275 0.976 0.000 0.351 0.138

1 Bias 0.199 −0.070 −32.30 −31.26 −36.35
ASE 0.049 0.053 0.013 0.037 0.033
ESE 0.049 0.054 0.000 0.038 0.034
MSE 0.205 0.054 0.323 0.132 0.151
CP 0.020 0.976 0.000 0.072 0.006

2 Bias 0.347 0.700 −42.25 −43.33 −48.19
ASE 0.060 0.067 0.009 0.038 0.032
ESE 0.060 0.069 0.000 0.040 0.033
MSE 0.352 0.069 0.423 0.180 0.198
CP 0.000 0.974 0.000 0.004 0.000

log(3) 0.25 Bias 0.055 0.050 −11.23 −11.86 −13.69
ASE 0.038 0.038 0.020 0.040 0.041
ESE 0.037 0.038 0.000 0.042 0.043
MSE 0.067 0.038 0.112 0.137 0.156
CP 0.696 0.972 0.000 0.102 0.056

0.5 Bias 0.106 0.000 −23.89 −20.17 −22.84
ASE 0.042 0.044 0.016 0.039 0.039
ESE 0.041 0.045 0.000 0.043 0.043
MSE 0.114 0.045 0.239 0.226 0.255
CP 0.278 0.977 0.000 0.000 0.000

1 Bias 0.198 0.070 −32.36 −31.22 −34.58
ASE 0.049 0.053 0.013 0.039 0.037
ESE 0.049 0.055 0.000 0.043 0.042
MSE 0.204 0.055 0.324 0.346 0.382
CP 0.020 0.968 0.000 0.000 0.000

2 Bias 0.350 0.140 −47.17 −43.83 −47.43
ASE 0.060 0.067 0.009 0.039 0.035
ESE 0.059 0.068 0.000 0.042 0.039
MSE 0.355 0.068 0.472 0.483 0.523
CP 0.000 0.970 0.000 0.000 0.000
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no bias in the estimated acceleration parameter, as expected, and so we present results for application of the proposed
SIMEX method only for the HR estimated by the commonly applied Cox model approach.

All simulations were run 2000 times using R version 3.2.1 and assumed that the covariate X followed a standard nor-
mal distribution. In addition, we set the true parameters to be 𝛼0 = 0 and 𝛼1 = −𝛽 for 𝛽 ∈ {log(1.5), log(3)}. The
survival outcome T is generated from a Weibull distribution with shape equal to 1 and scale set to exp (𝛼0 + X𝛼1), as
defined in Equation 1. For the error term 𝜈, as defined in Section 2.1, we considered a normal distribution and a shifted
gamma distribution with means 0 and variances equal to the varying values of 𝜎2

𝜈 . These are represented by N(0, 𝜎2
𝜈 )

and Gamma
(

1
𝜎2
𝜈

,
1
𝜎2
𝜈

)
− 1, respectively, using a parametrization such that if X ∼ Gamma(𝛼, 𝛽), then E(X) = 𝛼

𝛽
and

var (X) = 𝛼

𝛽2 . The set of simulations comparing the Cox and Weibull models set the cohort size at n = 1000 and varied
the measurement error variance to be 𝜎2

𝜈 ∈ {0.25, 0.5, 1, 2}. We refer to 𝜎2
𝜈 = 0.25 as small error, 𝜎2

𝜈 = 0.5 moderate error,
𝜎2
𝜈 = 1 large error, and 𝜎2

𝜈 = 2 very large error. For simulations examining the proposed SIMEX method, we set B = 50 and
𝜆 ∈ {0, 0.5, 1, 1.5, 2}, following the recommendation by Cook and Stefanski for covariate measurement error. A quadratic
function is used in the extrapolation step. These simulations ran 100 bootstrap replications, and let the number of sub-
jects be n ∈ {300, 1000}, and set the measurement error variance to be 𝜎2

𝜈 ∈ {0.25, 0.5, 1} to examine the performance of
the SIMEX method under different amounts of error.

Table S1 presents summary statistics for T′

T
for different values of 𝜎2

𝜈 to provide a description of the error in T′ as a
function of the 𝜎2

𝜈 in our simulations. We note that even for our small and normally distributed error, the ratio of T′

T
could still be quite appreciable. The error-prone time had an average (SD) multiplicative error factor of 1.15(0.61) with
an interquartile range (IQR) of (0.71, 1.41). For moderate error, the average error (SD) factor was 1.25(0.96) with an IQR
of (0.58, 1.59). For large error, average (SD) error factor was 1.69(1.95) with an IQR (0.53, 2.08). As expected for very large
error, the error factor was quite large with an average (SD) of 2.55(5.14) and an IQR of (0.38, 2.52). When the error term
followed a gamma distribution, we of course observed more extreme skewness in T′

T
and much larger standard deviation

for this factor compared to those of the normal distribution, as seen in Table S1.
Table 1 presents the relative performance of the Cox and Weibull models in the presence of multiplicative error, with

𝜈 following a normal distribution. Namely, we present the bias, average model standard error (ASE), empirical standard
error (ESE), MSE, and coverage probabilities (CP) for the 95% confidence intervals across the simulations. The ASE is
calculated as the mean of the model SEs, and the ESE is calculated as the standard deviation of the parameter estimates.
As expected, the estimated acceleration parameter (𝛼1) using both true time and the error-prone time is extremely close,
with small bias in the naive estimate for all settings of the measurement error variance and 𝛽. We also notice that for
all measurement error variance parameter values, the Weibull and Cox estimates for the HR parameter are biased and
reasonably similar, but the bias from the Weibull estimates is consistently slightly smaller. Overall, the naive intercept,
shape, and Cox and Weibull HR parameters remain largely biased through each value of 𝛽 and the variance of 𝜈. For
moderate error, the percent bias magnitude is greater than 16% and the absolute bias is large for the intercept in the
Weibull models. For large to very large error, similar results are observed with percent bias magnitude greater than 30%
for estimates of 𝛽 and large absolute bias for the intercept. In addition, these results in Table 1 are consistent with the
theoretical amount of attenuation bias in 𝛽 from Equation 3. The expected attenuation for 𝛽 is approximately 0.816 for
𝜎2
𝜈 = 0.5, 0.707 for 𝜎2

𝜈 = 1, and 0.577 for 𝜎2
𝜈 = 2. For 𝜎2

𝜈 = 0.5, the observed attenuation was 0.799 and 0.797 for true
𝛽 = log(1.5) and log(3), respectively. Similarly for 𝜎2

𝜈 = 1, the attenuation was 0.689 and 0.687, respectively, and 0.562 and
0.563, respectively, for 𝜎2

𝜈 = 2.
Table S2 presents analogous results to Table 1 using the shifted gamma error distribution. Similar results are observed,

with the naive intercept, shape, and Cox and Weibull HR parameters largely biased for each value of 𝜎2
𝜈 and 𝛽.

Table 2 presents the % bias, CP, MSE, ESE, average bootstrap standard errors (ASE) for SIMEX estimates, and average
model standard errors (ASE) for naive estimates to compare the performance of our SIMEX method for estimating the
HR with the naive method of ignoring the error, which was simulated as normally distributed. We notice that for small
error and both values of n and nonzero 𝛽, the bias for the SIMEX method is below 5% with coverage close to 95%. The
bias for the naive method (14-15%) is well over double that of SIMEX, with considerably worse coverage. As 𝜎2

𝜈 increases,
the results tell a similar story. Overall, the bias for both methods increases, but the bias of the naive method continues
to be at least double that of the SIMEX method. The coverage for both methods decreases with 𝜎2

𝜈 , with naive methods
falling off much more rapidly than that of the SIMEX method. For small error, the SIMEX method performs admirably
with small % bias and near 95% coverage. For moderate error, SIMEX still works reasonably well with under 10% bias and
coverage close to 90%. With large amounts of outcome error, SIMEX is noticeably biased, with close to 20% bias, but still
outperforms the naive method.
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TABLE 2 The percent (%) bias, average bootstrap standard error (ASE) for SIMEX, average
model standard error (ASE) for naive, empirical standard error (ESE), mean squared error (MSE),
and coverage probabilities (CP) are given for 2000 simulated data sets for the SIMEX and naive
methods with exponential time and a mean zero normal distribution for the error term. Type 1
error is shown instead of % bias for 𝛽 = 0

𝛽 𝜎2
𝜈 n Method % Bias ASE ESE MSE CP

log(1.5) 0.25 300 SIMEX −3.234 0.077 0.076 0.077 0.942
Naive −15.05 0.062 0.064 0.089 0.810

1000 SIMEX −3.432 0.041 0.041 0.043 0.930
Naive −15.25 0.033 0.033 0.070 0.535

0.5 300 SIMEX −8.815 0.082 0.082 0.089 0.921
Naive −23.72 0.060 0.062 0.114 0.633

1000 SIMEX −9.232 0.044 0.044 0.058 0.852
Naive −25.05 0.033 0.032 0.107 0.128

1 300 SIMEX −18.46 0.087 0.086 0.114 0.852
Naive −36.08 0.060 0.063 0.159 0.33

1000 SIMEX −18.90 0.046 0.047 0.090 0.615
Naive −36.64 0.033 0.035 0.153 0.007

log(3) 0.25 300 SIMEX −2.100 0.101 0.099 0.101 0.945
Naive −13.51 0.075 0.079 0.168 0.466

1000 SIMEX −2.172 0.054 0.053 0.058 0.922
Naive −13.98 0.041 0.043 0.159 0.049

0.5 300 SIMEX −6.780 0.107 0.107 0.130 0.889
Naive −22.07 0.072 0.076 0.254 0.112

1000 SIMEX −7.037 0.058 0.058 0.097 0.72
Naive −22.94 0.039 0.043 0.256 0.000

1 300 SIMEX −16.03 0.111 0.112 0.209 0.62
Naive −34.03 0.069 0.074 0.381 0.002

1000 SIMEX −16.40 0.060 0.061 0.190 0.16
Naive −34.53 0.037 0.041 0.382 0.000

𝛽 𝜎2
𝜈 n Method Type 1 error ASE ESE MSE

0 0.25 300 SIMEX 0.052 0.071 0.071 0.071
1000 SIMEX 0.043 0.038 0.038 0.038

0.5 300 SIMEX 0.053 0.076 0.076 0.076
1000 SIMEX 0.045 0.040 0.040 0.040

1 300 SIMEX 0.056 0.081 0.081 0.081
1000 SIMEX 0.047 0.043 0.043 0.043

Table 2 also presents the type 1 error, CP, MSE, ESE, and ASE measurements for the SIMEX method simulated with the
true 𝛽 = 0 with a normal error distribution. For all combinations of 𝜎2

𝜈 and n, we see that the type 1 error hovers around
0.05.

Table 3 presents similar estimates of relative performance of estimating the HR, comparing our SIMEX method to the
naive method when the error in T′, 𝜈, follows a gamma distribution. In these scenarios, the average multiplicative error
and variance for the error in T′ were larger compared to the same scenario for the normally distributed error (Table S1),
and the SIMEX method performed worse overall than with the normally distributed error for a fixed value of 𝜎2

𝜈 . We notice
that for small error and both values of nonzero 𝛽 and n, the bias for the SIMEX method is 8% or below with coverage
close to 95%. The bias for the naive method (16-18%) is over double that of SIMEX, with considerably worse coverage.
As 𝜎2

𝜈 increases, the bias for both methods increases, but the bias of the naive method continues to be just under double
that of the SIMEX method. As expected, the coverage for both methods decreases with 𝜎2

𝜈 , with naive methods decreasing
much more rapidly than that of the SIMEX method. Even with dramatically skewed error, for small outcome error, the
SIMEX method performs well with reasonably small % bias and decent coverage (76-93%). For moderate error, SIMEX
performs less well with bias around 16% to 17% and relatively weak coverage with the errors from this skewed distribution
becoming quite large. Our most extreme skewed error setting led to upwards of 15-fold multiplicative error factors and
SIMEX performing poorly with bias around 30%. In a real data setting, this magnitude of error may actually be detected
and corrected by usual out of range data quality assurance methods at the data collection level.

For the proposed SIMEX method, Table 3 also presents analogous type 1 error results to Table 2 using a gamma error
distribution. Even for this skewed error, the type 1 error rate was preserved at 0.05 for all 𝜎2

𝜈 and n.
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TABLE 3 The percent (%) bias, average bootstrap standard error (ASE) for SIMEX, average
model standard error (ASE) for naive, empirical standard error (ESE), mean squared error (MSE),
and coverage probabilities (CP) are given for 2000 simulated data sets for the SIMEX and naive
methods with exponential time and a shifted gamma distribution (mean 0) for the error term.
Type 1 error is shown instead of % bias for 𝛽 = 0

𝛽 𝜎2
𝜈 n Method % Bias ASE ESE MSE CP

log(1.5) 0.25 300 SIMEX −7.270 0.077 0.076 0.082 0.929
Naive −17.65 0.061 0.064 0.096 0.766

1000 SIMEX −8.025 0.041 0.041 0.053 0.864
Naive −18.33 0.033 0.034 0.082 0.379

0.5 300 SIMEX −16.98 0.081 0.082 0.107 0.841
Naive −30.01 0.060 0.063 0.137 0.483

1000 SIMEX −17.87 0.043 0.043 0.084 0.594
Naive −29.74 0.033 0.035 0.126 0.055

1 300 SIMEX −27.54 0.084 0.083 0.139 0.706
Naive −41.07 0.060 0.062 0.178 0.207

1000 SIMEX −28.37 0.044 0.045 0.124 0.278
Naive −42.45 0.032 0.034 0.176 0.003

log(3) 0.25 300 SIMEX −5.578 0.105 0.106 0.122 0.898
Naive −15.94 0.074 0.084 0.194 0.360

1000 SIMEX −6.380 0.057 0.059 0.091 0.758
Naive −16.55 0.040 0.047 0.188 0.017

0.5 300 SIMEX −15.96 0.113 0.122 0.214 0.636
Naive −27.45 0.070 0.089 0.314 0.042

1000 SIMEX −17.19 0.062 0.066 0.200 0.146
Naive −28.71 0.038 0.049 0.319 0.000

1 300 SIMEX −29.28 0.117 0.124 0.345 0.232
Naive −41.6 0.066 0.095 0.467 0.000

1000 SIMEX −30.91 0.065 0.068 0.346 0.001
Naive −42.43 0.035 0.049 0.469 0.000

𝛽 𝜎2
𝜈 n Method Type 1 error ASE ESE MSE

0 0.25 300 SIMEX 0.049 0.071 0.069 0.069
1000 SIMEX 0.057 0.037 0.037 0.037

0.5 300 SIMEX 0.052 0.074 0.074 0.074
1000 SIMEX 0.049 0.039 0.039 0.039

1 300 SIMEX 0.037 0.077 0.075 0.075
1000 SIMEX 0.056 0.040 0.041 0.041

Table S3 presents the performance for the normal error distribution, but with time following a lognormal distribution.
In this case, the Weibull model is no longer the correct one even for the true event time. We let 𝜈 have variance 1 and let
𝛽 = log(3). Even for this relatively large 𝛽 and misspecified parametric model, we see that the naive acceleration parameter
is quite unbiased, as before. However, in contrast to the previous results, the Cox and Weibull HRs are quite similar and
nearly unbiased, although the bias for the Weibull HR remains slightly smaller. The naive intercept for the Weibull model
continues to display large bias with time distributed lognormally. The lack of bias in the HR can be attributed to the fact
that the naive shape parameter in this model, 𝜎, is estimated without bias, in contrast to all 3 previous models. These
results emphasize that the HR parameter has unpredictable bias depending on the underlying distribution, but that the
acceleration parameter is more robustly estimated in the presence of random multiplicative error in the outcome.

3.1 Censoring
The above simulations were done with no censoring of the event time. To examine the impact of censoring, simula-
tions were run in similar parameter settings as described in the beginning of Section 3 with the addition that the true
survival times were randomly censored and error was added to the censored event times. Specifically, we considered
𝛽 ∈ {log(1.5), log(3)}, 𝜎2

𝜈 ∈ {0.5, 1} and simulated 25%, 50%, 75%, and 90% censoring. True survival times were again gen-
erated exponentially, but with the baseline hazard set to 0.1. After the true survival times were generated, separate random
right censoring times were determined for each 𝛽 to yield the desired % censored event times. The censoring times were
generated uniformly with lengths 4, 4, 2, and 1 for each % censored time, respectively, to mimic trials of different lengths.
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The error-prone times were then generated by adding random multiplicative error to the censored times and the rest of
the simulation parameters follow as before. We note that this kind of error, ie, error in the censored event time, is consis-
tent with a time-to-event outcome in the HIV/AIDS setting discussed in the introduction, where there may be error only
in the start time of the observation period for an event (eg, time of ART initiation) but the event time (eg, virologic fail-
ure) is determined precisely. As Table 4 shows, although the SIMEX method does not handle censoring directly, applying
our extension to this setting still improves the bias compared to ignoring the error. Of equal interest is that the amount of
censoring seems to have an inverse relationship with the percent bias in the log HR. For example with 𝛽 = log(1.5) and
𝜎2
𝜈 = 0.5, as the percent censored increases from 25 to 50 to 75 to 90, the percent bias decreases from −12.72 to −7.090

to −3.130 and to −1.690, respectively. In addition, we observe that the CP increases with increasing censoring. A sim-
ilar effect is observed for other combinations of 𝛽 and 𝜎2

𝜈 in Table 4. Thus, our results suggest that for rare events that
are exponentially distributed and randomly censored, the effect of random, multiplicative measurement error in the cen-
sored failure time outcome has little effect on the estimates of 𝛽. In this case, the risk sets in the Cox partial likelihood
score at each failure time remained largely the same. In such scenarios, since the event indicator is correct in this setting,
the Cox score defined by the error-prone event times would be a sum of similar score contributions over the same indi-
viduals as the score defined by the true event times, hence why there is little bias. This seems to reconcile the different
conclusions that Korn et al21 and Hong et al22 came to regarding this setting described in Section 1. Korn et al considered
simulations that approximated data involving outcome error in the evaluation of progression-free survival for breast can-
cer patients. These authors observed that with the correct HR and 50% censoring, there is very little bias caused by the

TABLE 4 The percent (%) bias, mean squared error (MSE), and coverage probabilities (CP) are
given for 2000 simulated data sets for the SIMEX and naive methods with n = 1000, exponential
time, baseline hazard of 0.1, a normal distribution for the error term, and 25%, 50%, 75%, and 90%
censoring for the true event time

% Censored 𝛽 𝜎2
𝜈 Method % Bias MSE CP

25 log(1.5) 0.5 SIMEX −4.776 0.048 0.931
Naive −12.72 0.064 0.712

1 SIMEX −9.331 0.059 0.872
Naive −18.31 0.084 0.492

log(3) 0.5 SIMEX −4.948 0.081 0.836
Naive −15.53 0.177 0.054

1 SIMEX −10.94 0.135 0.501
Naive −23.23 0.260 0.000

50 log(1.5) 0.5 SIMEX −2.828 0.051 0.939
Naive −7.090 0.054 0.902

1 SIMEX −5.325 0.056 0.930
Naive −10.41 0.063 0.839

log(3) 0.5 SIMEX −3.441 0.075 0.904
Naive −10.34 0.126 0.408

1 SIMEX −7.287 0.105 0.762
Naive −15.47 0.179 0.120

75 log(1.5) 0.5 SIMEX −1.430 0.066 0.948
Naive −3.130 0.065 0.939

1 SIMEX −2.496 0.068 0.946
Naive −4.590 0.067 0.940

log(3) 0.5 SIMEX −1.885 0.082 0.947
Naive −5.610 0.095 0.848

1 SIMEX −3.940 0.093 0.909
Naive −8.260 0.117 0.714

90 log(1.5) 0.5 SIMEX −1.233 0.084 0.956
Naive −1.690 0.082 0.946

1 SIMEX −1.804 0.085 0.960
Naive −2.680 0.084 0.941

log(3) 0.5 SIMEX −1.281 0.095 0.950
Naive −3.640 0.096 0.918

1 SIMEX −2.587 0.101 0.942
Naive −5.350 0.106 0.874
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random measurement error. In addition, simulating a cancer trial with a very rare event, with 96% censoring, resulted in
even less bias. On the other hand, the more appreciable effects of event time error on the estimated HR that Hong et al
found may be attributed to the studied setting being one where there was a much smaller percentage of censored events
(5-25% censoring in simulated tumor progression).

Lack of bias in the naive estimates may not always be the case for rare events. For instance, there can be appreciable bias
in the naive estimate for the rare event setting when the majority of the censoring happens early in the observation time
period, creating observed event times that are close together relative to the size of the measurement error. We simulated
this scenario by censoring an exponential event time T, with baseline hazard 0.1 and a log hazard coefficient of 1 for a
standard normal covariate X, on the interval (0, 0.15) and generating the error-prone T′ by adding a random, standard
normal error term to the censored event time. In this case, there was approximately 90% censoring and −13.55% bias
in the naive estimate as Table S4 shows. SIMEX in this case provides a modest bias reduction, with a bias of −11.6%.
We simulated a second scenario with appreciable bias for rare events, which included multiplicative random error and
covariate-dependent censoring. For this setting, we simulated the underlying PH model, only we censored uniformly on
(0, 0.15) if X > 0, and otherwise uniformly on (0, .05). Random lognormal multiplicative error with variance 0.5 was added
to the censored event time. In this example, there was approximately 90% censoring and the naive estimate had a bias of
−14.70%, while the SIMEX estimate had a bias of −7.91% as Table S5 shows.

4 DATA EXAMPLE

For the purposes of illustration, we apply the proposed method to electronic health records data from a large HIV clinic,
the Vanderbilt Comprehensive Care Clinic (VCCC). The VCCC is an outpatient clinic that provides care to HIV patients
and collects clinical data over time, including demographics, laboratory measurements, and pharmacy dispensations. In
addition, the VCCC has fully validated all key research variables, which revealed extensive errors in the original data.
Thus, this observational cohort is ideal for directly assessing the relative performance of the SIMEX estimators compared
to naive estimators. Throughout this example, we considered the estimates from the fully validated dataset to be the
“truth.” For a more detailed description of the cohort, see Lemly et al.28

We analyzed data on 3996 HIV-positive patients who established care at the VCCC between 1998 and 2013. The event
time here is considered to be the time from the start of ART to the time at virologic failure, which is defined as an HIV-RNA
count greater than or equal to 400 copies/mL. The HIV-RNA assay, and hence time at virologic failure, is considered to be
free of errors, whereas the time at the start of ART is error-prone. We studied the association between CD4 at enrollment
(ie, at first visit to the VCCC), patient sex, age at enrollment, and the defined event time. For each analysis (using validated
or unvalidated data), patients were excluded if they had a missing ART start date, did not start ART after enrollment, or
had no follow-up after starting ART. In the unvalidated dataset, 3049 patients satisfied the criteria for inclusion whereas
2973 patients satisfied the criteria in the validated dataset. A total of 2923 met the inclusion criteria for the analysis of
both the validated and unvalidated datasets and were used in all further analyses to ensure that any differences between
estimators are not due to differences in included patients. In this dataset, 28.6% of event times had an error with an average
(SD) multiplicative error factor of 2.33(32.06). Of the 2923 subjects, 22 did not reach failure in the unvalidated but did
reach failure in the validated and 54 failed in the unvalidated but not in the validated. Thus, the number of subjects who,
due to the error-prone ART start time, had an incorrect event indicator was small at 3%. While SIMEX does not directly
address this kind of inclusion/exclusion error, we were interested in seeing how SIMEX would perform in this real data
scenario. Censoring was 23.4% in the validated data and 22.3% in the unvalidated data.

We use the method described in Section 2 and compare the performance of the SIMEX estimator to that of the naive
estimator that ignores the error. The univariate and multivariate Cox models were fit and used to calculate the HRs for a
100-unit increase in CD4, comparing females to males, and a 10-year increase in age. This was done for both the validated
and unvalidated datasets. For our SIMEX approach, we set B = 50 and 𝜆 = {0, 0.5, 1, 1.5, 2}, as described in Section 2.2.
Here, the variance of the error in time is not assumed to be known, but rather estimated from a validation subset. From
the 2923 subjects in both datasets, a random subsample of 300 was assumed available and 𝜎2

𝜈 was estimated. As Table S6
shows, the amount of error in T′

𝜆b compared to T, T′
𝜆b

T
, is substantial, as the IQR increases with 𝜆 and the standard deviation

stays relatively large. Using a quadratic function, we then extrapolate back to 𝜆 = −1 and obtain our approximation of
the true HR using the full cohort. Standard errors for the SIMEX method were then obtained using a bootstrap method,
with bootstrap sampling stratified on the validation subset membership and using 100 bootstrap samples.
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TABLE 5 The hazard ratios and their corresponding bootstrap 95% confidence
intervals for sex, a 100-unit increase in enrollment CD4, and a 10-year increase in
age at enrollment for the time at virologic failure post antiretroviral therapy

Univariate
Sex 100 × CD4 10 × Age at enrollment

True 1.128 (1.024-1.243) 0.883 (0.867-0.900) 0.995 (0.955-1.037)
Naive 1.098 (0.997-1.208 ) 0.885 (0.869-0.901) 0.990 (0.951-1.032)
SIMEX 1.101 (0.988-1.227) 0.882 (0.863-0.902) 0.985 (0.948-1.024)

Multivariate
Sex 100 × CD4 10 × Age at enrollment

True 1.047 (0.950-1.155) 0.883 (0.867-0.900) 0.975 (0.935-1.017)
Naive 1.020 (0.926-1.123) 0.885 (0.869-0.901) 0.973 (0.933-1.014)
SIMEX 1.025 (0.929-1.131) 0.882 (0.862-0.902) 0.967 (0.926-1.010)

The HRs and their corresponding confidence intervals are shown in Table 5 comparing the true, naive, and SIMEX
estimators. The true estimator was calculated using the validated dataset, whereas the naive estimator was calculated
using the unvalidated dataset to simulate a scenario in which validated data are not available on any subjects. The SIMEX
estimator was also calculated on the unvalidated data, assuming that a subset of 300 validated subjects was available
to estimate the error variance. For the univariate analyses, the SIMEX estimator appears to slightly improve the bias
in the HR compared to the naive estimators for patient sex (−2.39% and −2.66%, respectively) and a 100-unit increase
in enrollment CD4 (−0.11% and 0.23%, respectively). However, for a 10-year increase in age at enrollment, the SIMEX
estimator does not improve the bias compared to the naive estimator with −1.00% and −0.50% bias, respectively. Overall,
there is very little bias in the naive analyses of the unvalidated data. We observe similar results in the multivariate analysis.
The SIMEX estimator again appears to slightly improve the bias in the HR compared to the naive estimator for patient sex
(−2.10% and−2.58%, respectively) and a 100-unit increase in enrollment CD4 (−0.11% and 0.23%, respectively), but not for
a 10-year increase in age at enrollment (−0.82% and−0.20%, respectively). Overall, both the SIMEX and naive methods are
quite close to the HR from the fully validated data. The performance of our SIMEX extrapolation is presented graphically
in Figure S1. Note that our SIMEX approach assumes random measurement error in the time-to-event outcomes. To test
whether this assumption holds for the VCCC data, logistic regression models were run on the full data (N = 2923) to
estimate the odds of the unvalidated censored event time being incorrect for the covariates sex (odds ratio [OR] = 0.971,
P value = .756), enrollment CD4 (OR = 0.880, P value < .001 for a 100-unit increase), and enrollment age (OR = 0.995,
P value = .241 for a 10-year increase). Given the odds ratio and significant P value for CD4, it appears the measurement
error in the outcome is not purely random. However, even under some modest violations of the random error assumption
in this data example, the method still performed relatively well.

In addition, a similar analysis was run with the event time defined to be the time from the start of ART to the time
of first opportunistic infection (OI). Here, the time at first OI is also error-prone, resulting in 45.0% error in the event
time and an average (SD) multiplicative error factor of 1.84(18.8). Censoring for this endpoint is 79.4% in the validated
data and 69.2% in the unvalidated data. We observe similar results in this scenario—the bias in the naive HRs is small to
moderate and the SIMEX estimators stay close to those values. More detailed results are shown in Table S7. We note that
although the average error factor is less than that of the analysis for time to virologic failure, the time at first OI has much
greater censoring. This may have contributed to the SIMEX method's success in estimating HRs very close to those of the
validated estimates.

The run time for the mulivariate analysis described above was 1.06 hours on a 64-bit PC with an i7 processor. We also
provide code and a simulated dataset in the Supporting Information to further demonstrate the ease of application of our
SIMEX method.

4.1 VCCC data simulation
We consider a simulation study that mirrors attributes of the VCCC dataset, excluding any covariate-dependent measure-
ment error, to explore the performance of SIMEX under random multiplicative error in this setting. In particular, the true
variance of the error in time is estimated from a random subsample of 300 from the VCCC data similar to above. The
true beta parameters were obtained by fitting a parametric Weibull regression model to the fully validated data for time to
virologic failure, with CD4 count, patient sex, and age at enrollment as covariates. The sample size for the simulated
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cohort was set at n= 2923 and random right censoring times generated uniformly to average 24% censoring to match those
settings of the VCCC data. In addition, all 3 covariates were generated to be as similar as possible to those observed in the
VCCC data. Patient sex was randomly sampled according to the true observed probabilities of males and females. Then
stratified on patient sex, we generated bivariate normal distributions for the age at enrollment and the square root of CD4
count, where the square root transformation was applied for normality; the means, SDs, and correlations were matched
based on the true covariates. True survival times (T) were generated exponentially using the simulated CD4 count, sex,
and age at enrollment variables and censoring applied as described above. For the error-prone T′, we applied random
multiplicative error to T and matched the measurement error distribution for 𝜈 to that of the VCCC data. Specifically,
71.5% of subjects in the VCCC had no error in the time-to-event and the remaining subjects had highly right-skewed error.
Thus, a shifted gamma error with shape and rate both equal to the estimated measurement error variance was applied to
28.5% of the simulated subjects. We additionally varied the distribution of 𝜈 to be normal and shifted gamma (applied to
all simulated subjects) to test the sensitivity of the results to the shape of the error distribution. Similar to the VCCC data
analysis, the SIMEX method estimated the measurement error variance using a validation subsample of 300 simulated
subjects and obtained SEs using 100 bootstrap samples stratified on validation subset membership.

Table S8 presents the % bias, CP, and SEs for the simulation described above using the gamma mixture, mean zero
normal, or shifted gamma error distributions. First, we note that with the assumed random measurement error, there was
a modest amount of bias in the naive estimates (10-17% depending on the coefficient and the error distribution) compared
to what we observed in the true data (under 3%). We then observe for our simulation that for all covariates, the SIMEX
estimates had at least an 80% reduction in bias over the naive for the gamma mixture, a 60% reduction for normal error,
and at least a 40% reduction for the shifted gamma. In addition, the CPs for all covariates are similar or a little higher for
SIMEX compared to the naive method for all error distributions and the MSEs are generally similar for the SIMEX and
naive methods. Thus, these simulations suggest that the nonrandom measurement error that seems to be present in the
VCCC data counteracted bias that would have been observed in the naive estimates with random, multiplicative error.
The random error in our simulation for this setting induces bias in the naive estimates that our SIMEX method is able to
correct for a variety of underlying error distributions.

5 DISCUSSION

There is no substitute for carefully and accurately collected data. In the event that an error-free outcome cannot be
obtained, then ideally one would be able to do a detailed validation study to obtain data on the structure of the outcome
measurement error in a subset so that proper statistical models could be formulated to estimate and adjust estimators for
this error structure. Without the availability of a validation subset, it is common practice to simply ignore the errors in the
outcome and proceed with the same analysis as if there were no measurement error. In this work, we saw that even sim-
ple random error in a survival outcome can bias the HR estimator for continuous time-to-event outcomes. We propose a
few analysis options for this setting involving random multiplicative error.

Regression theory and our simulations demonstrate that the log HR from the Cox model can be quite biased even for
relatively small amounts of random measurement error, whereas the acceleration parameter of the Weibull model remains
unbiased in the presence of random multiplicative measurement error. This is notable, since the addition of the error for
the studied settings meant the parametric form for the survival outcome assumed by the Weibull model no longer held for
the error-prone covariate. The observation also held true in our simulations when the parametric form of the true event
time was not Weibull. Given this robustness, and the fact that the AFT model has been advocated as a more intuitive model
for treatment effects in clinical settings,29,30 we recommend consideration of this regression model in place of, or at least
performed alongside of, the Cox model, in settings where the censored event time is known to have random error. Due to
the Weibull model being both PH and AFT, this is more a change in which summary statistic is chosen for the association
between a covariate and outcome, than in the model for how X affects the outcome. Keiding et al27 and others31 made a
similar recommendation for AFT models due to their ability to separate out dispersion from regression parameters.

In addition, we described an extension of the SIMEX algorithm to correct the bias in the HR induced by nondiffer-
ential multiplicative outcome error for a continuous event time. Although the proposed method is only an approximate
method, with some expected bias, simulations demonstrated that our method corrected multiplicative outcome error and
performed much better than the common naive method of ignoring the error, maintaining a smaller MSE in a variety of
settings. The method does start to break down with large error variance resulting in bias greater than 15%; however, as
Table S1 illustrates, the amount of multiplicative error that induced large biases was extreme, with the IQR of the ratio of
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the error-prone to the true outcome ranging from less than half to more than double, and would require analyses beyond
that of our approximate method. We also applied the proposed method to a data example where there were both censor-
ing and known associations between the outcome error distribution and important predictors. In this example, SIMEX
performed similar to the naive method and in some cases perhaps made mild improvements. These findings under a non-
random error scenario are similar to those of Küchenhoff et al,23 who studied the use SIMEX for misclassification error
in binary response variables and in one simulation assessed effects of differential measurement error. They found that
the naive estimates are biased, but in different directions (away from or towards the true parameter). Our results suggest
that like with random error, the hazard may be less subject to bias with moderate systematic error in the outcome when
the observed event time is rare. It is of note that the above simulations and data example all involved right-skewed error,
with the mean error-prone T′ larger than that of the true T, due to the nature of time-to-event data. We investigated the
performance of our method with left-skewed error for a small number of settings and found that SIMEX overestimated
the true HR while still providing similar reduction in the magnitude of the bias for all settings. Detailed results can be
found in Table S9. Thus, our simulations showed that the SIMEX method under random error was an improvement over
the naive estimator for a variety of underlying error distributions.

Because the error model under study was observed to cause appreciable bias in the estimated HR, but imperceptible
bias in the acceleration parameter, we applied our method only to the Cox model. However, it could be similarly applied to
other regression models. Limitations of our findings include the need to have a known error variance 𝜎2

𝜈 or the availability
of a validation subset from which to obtain an estimate of this error variance. With a validation subset, our method
can incorporate an estimated error variance and the bootstrap can be used to obtain SE estimates that incorporate the
additional uncertainty from the estimated nuisance parameter. It is also noteworthy that all of our simulations were
done with independent error terms. Our approximate method is likely not able to easily handle covariate-dependent or
differential error in the general setting, and correction methods for this error structure are an area for future work. It is
also of interest to extend this method to be able to handle data with both outcome and covariate measurement error.

In the setting of random error, SIMEX provides a practical estimation method to adjust the HR for bias induced by
nondifferential measurement error in the failure time outcome. Without the availability of a validation subset or known
variance for the outcome error, our method provides analysts with a new tool to perform sensitivity analyses that vary
assumptions about the underlying measurement error variance, and examine the robustness of results to random error
in the event time.
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