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Abstract In veterinary medicine, prospective clinical trials are increasingly uti-
lized to address questions regarding effectiveness of therapies and patient prog-
nosis. A large number of these trials involve time-to-event (TTE) endpoints,
which require special methods of analysis to handle data in which not all subjects
are observed to have the event of interest. Analyses and interpretation of the re-
sults can be further complicated when an endpoint of interest is not observed in
some patients because they incur a competing risk, such as death from an unrelated
cause. Competing risks have been the source of confusion in many epidemiologic
analyses leading to the potential for misinterpretation. In this article, we review
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Abbreviations

CHF congestive heart fa
HR hazard ratio
KM KaplaneMeier
SHR subdistribution haz
TTE time to event
key considerations for the TTE analysis in the setting of competing risks. We briefly
review standard TTE tools, namely KaplaneMeier survival curves and Cox regres-
sion. In the setting of outcomes with competing risks, we provide guidance on
the appropriate analysis techniques, such as cumulative incidence curves, to esti-
mate the risk of an event of interest. We also describe a common pitfall of treating
competing risks as censoring in KaplaneMeier survival curve analysis, which can
overestimate the event rate of interest. We describe two common regression meth-
ods that examine associated risk factors in the presence of competing risks and
highlight the different research questions these methods address. This article pro-
vides an introductory overview and illustrates concepts with examples from veter-
inary trials and with example data sets.
ª 2018 Elsevier B.V. All rights reserved.
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Randomized clinical studies provide an impor-
tant basis for evidence-based practice. As such,
the proper design, analysis, and reporting of clin-
ical trials is a subject of increasing interest to
consumers of these data, including practitioners,
researchers, governmental regulators, and indus-
try. Many clinical cardiovascular studies [1e10]
involve time-to-event (TTE) analysis, in which the
duration of time from study enrollment to the first
occurrence of a clinically meaningful event is
studied. This outcome is often referred to as the
‘survival’ time whether or not the event involves
death. TTE or survival analysis generally requires
statistical approaches different from those used
for other types of outcome data, such as con-
tinuous variables (e.g. blood pressure) or dichot-
omous variables (e.g. the number of patients
experiencing disease recurrence within 30 days).
Over the course of TTE studies, patients either will
have experienced the event, in which case one
utilizes the time at which the event occurred, or
patients will not have experienced the event, in
which case one utilizes the length of time the
patient was observed event free. For certain types
of TTE analysis, patients not experiencing the
event of interest are all treated similarly, regard-
less of the reason. For instance, in a study of
cardiac-related sudden death in dogs with dilated
cardiomyopathy [3], patients who were alive at
the end of the study, lost to follow-up, or were
euthanized or died from non-cardiac causes were
all accounted for in a similar fashion; however,
these patients differ in an important respect.
Patients who are still alive or lost to follow-up still
could theoretically experience cardiac-related
death at some point in the future, whereas
patients dying from another disease cannot. The
latter is an example of an intervening event that
precludes always observing the event of interest
and is termed a competing risk. To accurately
estimate the probability of the event of interest
within a given time period, one must account for
the probability of any competing risks.

Competing risks are commonly overlooked, even
in highly visible studies. A review [11] of 50 human
clinical studies that were published in high-impact
medical journals found 35 of 50 (70%) inadequately
addressed competing risks. In veterinary medicine,
competing risks are rarely, if ever, accounted for.
In this article, we review key considerations for
TTE analysis in the setting of competing risks. We
briefly review standard tools for TTE analysis,
namely KaplaneMeier (KM) survival curves and Cox
regression. In the setting of TTE outcomes with
competing risks, we provide the reader with
guidance on the appropriate analysis techniques,
such as cumulative incidence curves, to estimate
the risk of an event of interest. We also describe a
less familiar regression method that appropriately
examines risk factors in the presence of competing
risks and highlight how the research question of
interest guides the choice of which particular
regression method to use. This article provides an
introductory overview of these topics and illus-
trates concepts with examples from veterinary
clinical studies and with example data sets. We
refer readers interested in further detail to a
several excellent references on the topic [12,13].
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Time-to-event analysis and censoring

A distinguishing feature of TTE analyses is that
some individuals will not have an observed event
time. Instead, the last time known without the
event, otherwise known as the censoring time, is
observed. For all individuals, this time should be
relative to a well-defined start time (e.g. time
from diagnosis) and a defined end time (e.g. the
end of the planned follow-up period for clinical
study). The advantage of TTE analysis is that
rather than simply comparing the proportions that
experienced the event by the end of the study,
such analysis considers the length of time an at-
risk individual was observed to be event free and
not just whether the event occurred [14]. Thus,
TTE analysis incorporates more information about
the patient’s clinical outcome and can be more
precise than simply analyzing the proportion with
an event, for example, the percentage that sur-
vived or died.

TTE data are routinely summarized using KM
survival curves [15]. Survival curves from differ-
ent treatment groups can be compared using a
log-rank test [15]. For example, Figure 1 shows
the KM survival curves in critically ill cats with
and without hyperlactatemia reported in the
study by Shea et al. [5] In this study, the survival
of cats with hyperlactatemia was significantly
Figure 1 KaplaneMeier (KM) survival curves of crit-
ically ill cats with (dashed line) and without (solid line)
hyperlactatemia. At the beginning of hospitalization, all
cats were alive. Over the course of follow-up, the sur-
vival curve stair steps downward as cats die. Cats that
survived and were discharged from the hospital are
represented by a solid circle. The survival curves
between cats with and without hyperlactatemia were
significantly different by the log-rank test with a p-value
of 0.03 (From the study by Shea et al. [5]).
different (log-rank p-value was 0.03) from that of
those without hyperlactatemia. Standard survival
analysis also uses the Cox proportional hazards
model, which evaluates the effect of one or
more variables on the survival time. The Cox
regression model estimates the hazard ratio (HR)
of the event in the treatment arm vs. the control
arm at any given point in time during the study
[15]. The HR can be thought of as a relative
probability of an impending event; that is, it
represents the instantaneous risk ratio between
two patient groups in the next small time inter-
val, among those still at risk. The individual
hazard rates may be varying over time, but the
commonly used Cox proportional hazards model
assumes that their ratio is constant over time.

As previously stated, an important advantage of
TTE analysis is that study participants not reaching
the primary endpoint (i.e. the ‘censored’
observations) can be included in the analysis up to
the point when their observation is discontinued or
the study ends [14]. Examples of censoring include
individuals withdrawn early from the study before
an event was observed, perhaps due to a change in
location that made visits no longer feasible, or
those who remain free from the event of interest
by the end of the study. A key assumption in the
conventional survival analysis is that the proba-
bility of experiencing the outcome of interest is
independent of the reason for censoring [16]. This
type of censoring is referred to as ‘independent
censoring’ and permits analysis of the data in hand
without concern that dropouts or non-related
deaths are potentially biasing the results. As will
be seen later, this assumption is violated in the
case of a competing risk.
Competing risks and analysis pitfalls

Survival analysis methods, such as KM analysis,
were originally developed to evaluate the proba-
bility of all-cause mortality [14]. KaplaneMeier
analysis assumes that regardless of the reason for
censoring, a censored individual is still at risk for
the outcome (i.e. death for any reason). The
assumption is that within each treatment cohort,
censored individuals would eventually have died at
the same rate as the individuals remaining in the
study, thereby preserving the independent nature
of the censoring. KaplaneMeier analysis sub-
sequently has been widely used to estimate the
probability of non-fatal clinical outcomes, for
instance, hospitalization, disease recrudescence,
or ‘treatment failure’ or the probability of cause-
specific mortality, such as death due to heart
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failure or cardiovascular disease. When applied in
this manner, the key assumption of independent
censoring can break down. For instance, consider a
study [3] that used KM analysis to evaluate the
time to the first onset of congestive heart failure
(CHF) or sudden cardiac death in dogs with pre-
clinical cardiomyopathy. Dogs that died from
unrelated causes were treated as censored obser-
vations. Thus, for the purposes of the KM analysis,
they were considered to still be at risk for CHF or
sudden death despite being dead. Said differently,
by treating deaths from other causes as a censor-
ing event, the KM survival curve estimated the risk
of CHF or sudden death recurrence in a world
where death from other causes did not occur.
Depending on the specific circumstances, such as
the incidence of death from other causes, the
impact of the reported treatment benefit on ‘real-
world’ animals that are, in fact, subject to death
from other causes can be clouded. We further
illustrate this below by examining how the KM
curve is calculated and describe an alternate way
to calculate incidence rates that account for
interceding events, namely we describe something
called the cumulative incidence curve.

Patient events that preclude the observation of
the primary study endpoint are called ‘competing
events,’ and these types of events produce ‘com-
peting risks’ [17,18]. A competing risk that could
be risk of death or a major health event from
another cause that once observed would make it
impossible for the individual to experience the
event of interest [11]. For example, in a study [7]
investigating the effect of tricuspid valve annular
motion on cardiac-related death in dogs, death
from a non-cardiac cause is a competing risk in
that the dog cannot subsequently die again for
cardiac reasons. Whereas the time to either of
these two events or overall survival can be exam-
ined using usual methods, the specific probability
of cardiovascular death must be analyzed using a
technique that accounts for the competing risk of
death.

Not all censored observations are competing
events. Censored individuals who are still event
free at the end of the study or were lost to follow-up
for reasons unrelated to the health outcome under
study can reasonably be assumed to have the same
subsequent risk for the study endpoint as those who
remain under study, but for a patient who has truly
experienced a competing event, the subsequent
risk for the outcome of interest is now zero. As a
result of how the KM analysis uniformly treats all
censored individuals as still at risk, it overestimates
the probability of an outcome subject to competing
risks, as shown below.
Effect of competing risks on survival
analysis

When analyzing survival data, we identify a group of
individuals who have not experienced the outcome
of interest before an observed event time and those
who are about to experience the event at that time.
This population serves as the denominator in cal-
culating the instantaneous baselinehazard,which is
then used to derive the KM survival curve. The
numerator of the hazard is thenumber of individuals
who have experienced the outcome at the time in
question. Standard KM analysis uniformly treats
competing events as censored observations, and in
doing so, it removes them from the denominator.
This effectively assumes that they are still at risk for
having the primary outcome, implying that the
event rate is the same in those still under observa-
tion as those no longer under observation. In the
absence of competing risks, KM analysis estimates
the survival function. The log-rank test is used to
test for a difference in survival between twoormore
groups, and Cox regression can be used to estimate
associations between covariates and the hazard
rate [13,15]. In the presence of competing risks, KM
analysis no longer estimates the survival function
because the risk of events in the censored individ-
uals (i.e. 0) is different from the risk in those not
censored [12,17]. Despite the presence of compet-
ing risks, Cox regression can still be used to estimate
the efficacy of an intervention, such as the effect of
a drug or placebo on thehazard or risk of anoutcome
at a given time [18]. In this scenario, the event
indicator for the analysis is whether or not the event
of interest occurred and the regression model esti-
mates a ‘cause-specific’ hazard, for instance, the
risk of experiencing the outcome if receiving the
drug [17].

In addition to the survival time and cause-
specific HR, another important characteristic of
disease is the proportion of subjects experiencing
an event of interest by a given time, otherwise
known as the cumulative incidence. When deter-
mining the cumulative incidence of specific events
such as cardiovascular-related death, those who
died from other reasons can be specifically
accounted for. For instance, dogs dying for other
reasons are subsequently no longer considered as
at risk for cardiovascular death, whereas dogs
having been censored for non-fatal reasons
(e.g. alive at the end of study, lost to follow-up,
protocol violations, etc.) remain at risk. Thus,
analysis and regression methods designed to spe-
cifically assess the cumulative incidence function
take competing risks into account.
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Analysis based on cumulative incidence

Unlike the KM method, the cumulative incidence
function for an event of interest considers three
possible event types at any given time as follows:
those who experienced the event of interest, those
who experienced a competing risk, and those who
were censored. The resultant calculation estimates
the risk of the primary event in individuals who have
not yet experienced any event. Individuals who are
censored are treated as still at risk at the time of
censoring; thosewho experience a competing risk are
not. In this way, one correctly estimates the cumu-
lative incidenceof observing anevent at a given time.

Analysis based on the cumulative incidence
function is similar to KM analysis in that two dif-
ferent cumulative incidence curves can be com-
pared using techniques [19] analogous to the log-
rank test. Similarly, the association of various
covariates with the cumulative incidence can be
determined using techniques developed by Fine
and Gray [12,17,20,21] which are analogous to Cox
regression. A full discussion of the mathematical
and epidemiological attributes of these calcu-
lations is outside the scope of this review, but in
general, cause-specific HRs based on Cox regression
can be thought of as measures of the relative risk of
incurring an event among those still at risk, whereas
regression methods for the cumulative incidence
produce a relative measure of the absolute risk
known as the ‘subdistribution’ hazard ratio (SHR)
[17,22]. This SHR estimates the covariate effects on
the rate of the event in the individuals either still at
risk or having already succumbed to a competing
risk. Note that this makes the SHR harder to
interpret as it does not correspond to a rate for a
population of interest, but it does provide infor-
mation on the relative cumulative incidence (or
probability) for that event. For this reason, we will
refer to the SHR as a comparative measure of the
absolute (cumulative) risk. The interested reader is
referred to the On-line Supplemental Tables A, B
and Fig. I for more details regarding the calculation
of KM survival and cumulative incidence curves.
d STATA 14.2, STATA Corp., College Station, TX.
Illustrative example 1: estimating inci-
dence in the presence of competing risks

Previous authors have illustrated the clinical fea-
tures of a competing risk using examples from
human medical clinical trials [20,23,24] and
through the use of computer simulations
[20,24e26], and we have adapted some of the
latter [20,25,26] in the following illustrative
example. By using a computer-simulated clinical
trial, we can examine the value of different sta-
tistics, such as the probability of observing various
events of interest, and compare them with the
underlying true values determined by the param-
eters used to generate the data. Using statistical
software,d we modified published code [25] to
create a hypothetical data set consisting of infor-
mation on 125 Doberman Pinschers with dilated
cardiomyopathy. Previous veterinary studies have
shown that affected dogs are at high risk for
cardiac-related death due to ventricular arrhyth-
mias or CHF [27,28]. Thus, if one specifically con-
siders sudden death as the primary endpoint,
death due to CHF represents a competing risk. We
then simulated a 2-year follow-up period during
which dogs had an equal chance of dying either
suddenly or from CHF, and follow-up data were
generated for all dogs.

Cumulative incidence is overestimated by
KM analysis

According to our simulation, at the end of 2 years,
65 dogs had died suddenly, 53 dogs had died from
CHF, and 7 dogs were still alive. We then calcu-
lated a KM survival curve of dogs that died sud-
denly (Fig. 2A). The KM analysis treats dogs that
either died from CHF or remained alive as cen-
sored observations and assumes all censored
observations are still at risk for sudden death. The
complement of the KM survival curve (1-KM) rep-
resents a naı̈ve estimate of the cumulative inci-
dence of the outcome, in this case, sudden death
(Fig. 2B). In studies that ignore the competing risk,
the 1-KM curve is routinely cited as the cumulative
incidence of the primary event [17]. Thus, based
on the KM analysis of our simulated data, the 2-
year probability of sudden death is w78%
(Fig. 2B). However, this probability is substantially
overestimated. When considering the cumulative
incidence function, which accounts for competing
risks, the estimate of sudden death at 2 years is
only 52% (Fig. 2C). The overestimation of sudden
death based on the KM estimator arises from
imputing sudden death events in the individuals
who had already died from CHF and therefore
were no longer at risk of sudden death.

Median survival is underestimated by KM
analysis

A standard reporting practice in TTE studies is to
use the KM or 1-KM curve to report the median TTE



Figure 2 KaplaneMeier (KM) and cumulative incidence function curves from a hypothetical data set of 125
Doberman Pinscher dogs with dilated cardiomyopathy. All dogs were successfully followed for the entirety of the
study. A) Two-year KM sudden death-free survival curve showed a progressive decline in the proportion of dogs free
from sudden death. The KM analysis treated dogs that died from congestive heart failure (CHF) as independently
censored observations (i.e. the future risk of observing sudden death is assumed to be unaffected), thus ignoring the
competing nature of this event on the primary outcome. B) The naı̈ve complement (1-KM) of the KM survival curve
shown in A estimated the cumulative proportion of dogs experiencing sudden death. The curve indicated that at 2
years, the cumulative incidence of sudden death was 78%. C) The 1-KM curve from B (purple solid line) drawn on the
same graph as the cumulative incidence function curve (orange dashed line) of sudden death showed that there was a
substantially lower incidence of sudden death at 2 years of 52%. Thus, in the presence of competing risks, the KM
analysis overestimated the probability of sudden death.
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or median ‘survival’ time, which is the point in
time that half the population has experienced the
event in question. As we have demonstrated, in
the presence of competing risks, KM analysis
upwardly biases the cumulative incidence of the
primary event, which will result in shortened
cause-specific median survival estimates com-
pared with those derived from the cumulative
incidence function [20]. Thus, as a general rule,
while Cox regression analysis accurately estimates
the relative hazard of the primary event, when-
ever >10% of study patients experience a com-
peting risk event, the median survival time as
determined by KM analysis can be substantially
underestimated [17].
Figure 3 KaplaneMeier curves of survival from sudden
death in a hypothetical study of 250 Doberman Pinscher
dogs with dilated cardiomyopathy, where deaths from
other causes were treated as censoring. These curves
indicate that dogs receiving treatment (blue dashed
line) experienced better survival with respect to sudden
death vs. dogs not receiving treatment (purple solid
line). The median time to sudden death in the treated
group was 1.5 years (95% confidence interval [CI],
1.0eN) compared with 0.9 years (95% CI, 0.6e1.2) in
the untreated group (log-rank test, p ¼ 0.021). These
naı̈ve estimates do not account for competing risks,
compared with those obtained by cumulative incidence.
Illustrative example 2: risk factor
association

We now consider the evaluation of a hypothetical
new drug that reduces risk of sudden death in
Doberman Pinschers with dilated cardiomyopathy
by 35% (equivalent to a HR of 0.65) but does not
affect the risk of death due to CHF (HR, 1.0). In
this example, we again use our simulation tool so
that we can compare empirical results with those
predicted by the original conditions, something we
would not know in a real-world clinical trial. To
simulate this, we created a second cohort of 125
‘treated’ Doberman Pinschers and simulated out-
come over the same 2-year period as the previous
‘untreated’ cohort. KM curves for sudden death,
which treated CHF deaths as censoring, revealed
that treatment significantly prolonged time to
sudden death in the treated group (Fig. 3). KM



Table 1 Cox-proportional cause-specific hazard ratios (HRs) and ‘subdistribution’ hazard ratios (SHRs) estimated
by FineeGray regression from a hypothetical study on Doberman Pinscher dogs receiving a treatment anticipated
to reduce the relative risk of sudden death by 35% but with no effect on the relative risk of death due to congestive
heart failure (CHF). Results of Cox regression from the simulated data set reflected the ability of treatment to
significantly reduce the relative risk of sudden death by w35%, whereas the HR for death due to CHF was not
affected. The cause-specific HRs describe the instantaneous relative risk of the event; here, competing risks are
treated as censored events. Results in the second column are derived from the cumulative incidence function and
account for competing risk events as events that affect the cumulative incidence. The SHR, although not directly
comparable with the Cox-derived cause-specific HRs, are a relative index of absolute, i.e. cumulative, risk. Thus,
as treatment reduced both the instantaneous (i.e. Cox-derived) and absolute (i.e., FineeGray derived) risk of
sudden death, the downstream effect of fewer dogs dying suddenly increased the absolute risk of dying at later
times due to CHF despite no effect of treatment on the relative risk of CHF. This is reflected in the SHR for CHF
death being significantly greater than 1. See text for more details. CI, confidence interval.

Event Cox regression
cause-specific hazard ratio

FineeGray regression
subdistribution hazard ratio

Sudden death
95% CI
p-value

0.64
(0.43e0.94)

0.022

0.59
(0.40e0.87)

0.008
Death due to CHF
95% CI
p-value

1.30
(0.91e1.85)

0.153

1.53
(1.08e2.17)

0.018

Figure 4 Cumulative incidence curves by cause of death and probability of overall death from a hypothetical study
of Doberman Pinscher dogs with dilated cardiomyopathy. A) Cumulative incidence curves for sudden death indicated
that dogs receiving treatment (orange dotted line) experienced a reduction in the relative risk of sudden death vs.
placebo (orange solid line), consistent with the expected effect of the treatment. Note that there is an approximately
34% absolute risk of sudden death in treated dogs by 2 years. Compare this to the cause-specific KaplaneMeier (KM)
survival curve for sudden death (Fig. 3), which indicated a 43% risk in treated dogs at 2 years. The overestimation by
the cause-specific KM estimate as compared with the cumulative incidence curve is due to the failure to account for
competing risks. B) Cumulative incidence curves for death due to congestive heart failure (CHF) indicated that the
absolute risk of death due to CHF was higher in dogs receiving treatment (blue dotted line) vs. placebo (blue solid line)
despite no etiologic effect of the treatment on this mode of death. As fewer dogs receiving treatment died suddenly,
the downstream effect was to increase the proportion of treated dogs that died from CHF, such that at the end of the
study period, a greater proportion of dogs receiving treatment died from CHF vs. dogs not on treatment.
C) KM probability of overall death curve (i.e. 1-KM, where KM is the usual KaplaneMeier survival curve for death from
either cause [inset]) demonstrated that the relative risk of overall death is not significantly different in dogs receiving
treatment (purple dotted line) relative to dogs receiving placebo (purple solid line) (log-rank test, p ¼ 0.60). Thus,
the relative risk of sudden death is reduced, but this is offset by a higher probability of dying from CHF than dying
suddenly. See text for more details.

Competing risks in veterinary studies 149



Figure 5 Stacked cumulative incidence function area curves allow for detailed prognostication with regard to
probability of various outcomes based on a hypothetical treatment in Doberman Pinscher dogs with dilated car-
diomyopathy that reduced risk of sudden death by 35%. The probability of sudden death over the course of the study is
shown in gold. The probability of death by congestive heart failure (CHF) is shown as purple, and the area in white is
the probability of being event free. Thus, the probability of any of the three outcomes (i.e. sudden death, death by
CHF, or event free) will add up to 100%. A) For dogs that received treatment, the probability of experiencing any of
the various outcomes by 2 years included a 34% chance of sudden death, 58% chance of death due to CHF, and 8%
chance to be free of either. B) For dogs that did not receive treatment, the probability of experiencing any of the
various outcomes by 2 years included a 52% chance of sudden death, 42% chance of death due to CHF, and 6% chance
to be free of either. These data can facilitate medical decision-making and prognostication. See text for more details.
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curves can provide an accurate estimate for
probability of all-cause survival, but for estimates
of cause-specific survival in both the groups, we
will see that KM curves produced incorrect esti-
mates for the reasons we have discussed.

Two separate Cox proportional hazards regres-
sion models were used to calculate cause-specific
HRs that separately described the relative risk of
sudden death and death due to CHF between the
treated and untreated cohorts (Table 1). As
expected, the cause-specific hazard for sudden
death was significantly reduced by w35% in the
treated group, whereas there was no significant
change in the relative risk of death due to CHF (HR
not significantly different than 1.0). How do these
results compare with analyses that account for
competing risks?

In the absence of competing risks, there is a
direct correspondence between the relative risk of
an event and the absolute risk or cumulative inci-
dence of an event such that a lowered relative risk
will decrease the cumulative incidence of the
event, an elevated relative risk will increase the
cumulative incidence, and an unchanged relative
risk will neither increase nor decrease the cumu-
lative incidence. In the presence of competing risks,
this correspondence might no longer hold,
especially when the probability of experiencing the
competing event is high. For instance, in our hypo-
thetical study, treatment was associated with a
lower instantaneous risk (i.e. HR ¼ 0.64; Table 1)
and a lower absolute risk of dying suddenly
(SHR ¼ 0.59; Table 1). The 2-year absolute risk
(i.e. cumulative incidence) of sudden death in
treated vs. untreated dogs was 34% vs. 52%,
respectively (Fig. 4A). In contrast, treatment was
associated with a neutral effect on the relative risk
of death from CHF (HR not significantly different
from 1.0, Table 1) but a higher absolute risk of dogs
dying from CHF (i.e. SHR ¼ 1.53; 2-year cumulative
incidence of death from CHF in treated vs. untrea-
ted dogs of 58% vs. 42%, respectively, Fig. 4B).

The reciprocal relationship between the
modes of death resulted in similar longevity in the
two treatment arms (Fig. 4C). We see this pattern
because as treatment reduces the absolute risk of
sudden death, dogs have more chance to experi-
ence CHF. Thus, the cumulative incidence of dogs
experiencing CHF deaths in the treatment group
increases as the study proceeds. This effect can be
quantified by regression analysis based on the
cumulative incidence curves [22,29]. The
increased absolute risk of death due to CHF is
indicated by the SHR from the competing risk
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regression being significantly >1 (Table 1). The
effect of competing risks to produce higher esti-
mates of median survival time for a given event vs.
those based on naı̈ve KM analysis is also seen.
Based on the naı̈ve KM curves, 50% of dogs with and
without treatment were estimated to have died
suddenly at 1.5 years and 0.9 years, respectively
(Fig. 3), whereas, in fact, only 32% of dogs
receiving treatment and 39% of dogs not receiving
treatment are expected to experience sudden
death at these times based on analysis of the
cumulative incidence (Fig. 4A).
Picking an analysis approach in the
setting of competing risks

The different analytical approaches presented in
our hypothetical studies are best used to address
different sets of questions [11,18,21]. Cox
regression addresses etiological questions, such
as whether or not a specific treatment reduces
the relative risk of an event and prolongs the time
to that event. Thus, the cause-specific HR is the
typical measure of efficacy in a clinical trial
comparing the effect of different treatments on a
specific event time. KaplaneMeier survival
curves, in presence of competing risks, can only
accurately examine overall survival, unless com-
peting risks are rare. Cumulative incidence curves
and their associated regression methods better
address questions about prognosis by incorporat-
ing all risks faced by a patient (Fig. 5). These
sorts of analyses can facilitate the presentation
of prognostic information to pet owners and
subsequent medical decision-making because of
their ease of interpretation. In our hypothetical
example, despite a significant reduction in the
relative risk of sudden death, dogs receiving
treatment did not live significantly longer than
dogs receiving placebo because of the competing
risk of death due to CHF. This is not to say that
the treatment somehow had an off-target effect
that caused CHFdremember that the Cox-
derived cause-specific HR for CHF was not sig-
nificantly different from 1.0 (Table 1)dit just so
happens that preventing sudden death exposed
dogs to a competing risk of CHF that was high
enough so that overall survival was not sig-
nificantly improved. From this example, we see
that a complete picture of the etiologic effects of
a drug and its prognostic implications was only
assured after examining all of the following: 1)
the cumulative incidence of the primary endpoint
and any competing risks, 2) comparative meas-
ures of the instantaneous risk (i.e. cause-specific
HRs for all event types, 3) comparative measures
of the absolute risk (i.e. the subdistribution HRs
for all event types), and 4) overall survival.

In special instancesdfor example, when the
incidence of competing events is relatively high,
there are strong patient preferences for one form
of outcome over another, or there is risk for fatal
adverse events associated with treatmentda
multi-faceted competing risk analysis should be
considered. As an example of the latter, if an
effective treatment is associated with important
risk of fatal reactions, the reduced number of
individuals exposed to the successful treatment
might be low enough to overwhelm the etiologic
treatment-associated benefit, such that the
cumulative incidence of treatment success is
actually the same or lower than the incidence of
fatal adverse reactions [30]. These types of sce-
narios demonstrate how KM analysis can be used to
assess overall survival and how cumulative inci-
dence analysis can be used to describe the treat-
ment effect on specific outcomes. Analysis based
on cumulative incidence is also useful in setting
policy and determining allocation of resources
based on the cumulative incidence of expected
outcomes [24,31,32]. In our hypothetical study, for
example, one would need to plan for an increase in
the number of CHF cases needing management as
the result of treatment. Competing risks are
common in both human and veterinary medicine,
particularly in studies involving geriatric pop-
ulations with significant comorbidities [20]. Com-
mercially available statistical software packages
readily perform analyses based on either KM or
cumulative incidence [25,33e35], and inves-
tigators should consider the appropriateness of
either or both analyses when performing studies.
Conclusions

In this article, we have highlighted the impor-
tance of choosing the right analysis technique for
TTE endpoints in the presence of competing risks,
so that the resulting statistics and hypothesis
tests are aligned with the clinical question of
interest. KaplaneMeier curves provide an appro-
priate way to describe survival in the presence of
rare or non-existing competing risks, whereas
cumulative incidence curves accurately describe
cumulative incidence rates when competing risks
might be substantial. Cox regression addresses
questions about relative instantaneous risk,
whereas regression based on the cumulative
incidence function addresses questions about the
ratio of absolute (cumulative) risk for specific
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outcomes between groups. The former addresses
the etiologic question about the rate of events in
those at risk; the latter addresses questions about
the probability of certain types of events even-
tually occurring. Complementary analyses of
overall survival and cumulative incidence and use
of specialized regression methods in clinical
studies with substantial competing risks are likely
to provide fuller results that can better guide
clinical decision-making and estimation of treat-
ment effects on the multitude of clinical out-
comes that are important to the patient.
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