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Abstract

The first table in many articles reporting results of a randomized clinical trial compares base-

line factors across arms. Results that appear inconsistent with chance trigger suspicion, and

in one case, accusation and confirmation of data falsification. We confirm theoretically

results of simulation analyses showing that inconsistency with chance is extremely difficult

to prove in the absence of any information about correlations between baseline covariates.

We offer a reasonable diagnostic to trigger further investigation.

1 Introduction

In clinical trials, baseline variables are used to: 1) document that the trial recruited its target

population, 2) summarize the natural history of the disease in the control arm, and 3) adjust

the treatment effect for baseline differences in prognostic factors. Because baseline variables

are measured before randomization, any differences between arms are attributable to chance.

That is, the null hypothesis of no treatment effect should hold marginally for each baseline var-

iable. For each continuous baseline variable compared using a continuous test statistic, the

marginal distribution of its p-value should be uniform if the assumptions underlying the test

(e.g., the data are normally distributed) are satisfied.

Clinical trialists sometimes go one step further and assume that p-values should behave like

independent uniform deviates. Seeing appreciably more or fewer than the expected one in 20

statistically significant differences at α = 0.05 arouses suspicion. In one case uncovered by Bol-

land et al. [1], that suspicion led to the accusation and later verification of data falsification. A

randomized study in dogs uncovered by Calisle et al. [2] also appeared to show implausibly lit-

tle variability of baseline covariates across arms. It and other publications by the same authors

were retracted.

Betensky and Chiou [3] and Bland [4] use simulation to show that, in practice, p-values for

baseline variables in clinical trials frequently do not behave like independent uniforms for sev-

eral reasons: 1) the assumptions underlying a test may not be satisfied (e.g., skewed data do

not fit the normality assumption), 2) the covariate may be binary, in which case even marginal

uniformity of p-values does not hold exactly, and 3) many baseline covariates are correlated,

so their p-values are also correlated. The authors conclude that interpretation of standard tests
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of uniformity applied to p-values is problematic. A natural question is whether a legitimate

case for data falsification can be made based solely on p-values reported in a baseline table (i.e.,

with no information presented on correlations between baseline covariates).

We propose a statistical test based on the sum of squared z-scores of baseline covariates that

can be used to determine whether further investigation of fraud is warranted. This article com-

plements the simulation results in [3–4] with theoretical results showing the difficulty of actu-

ally proving fraud. The problem is that the distribution of the test statistic depends critically on

the correlation between z-scores comparing arms on baseline covariates. Naively treating these

z-scores as independent rejects the null hypothesis of no fraud too often if there is any true cor-

relation. On the other hand, using the worst case correlation matrix leads to an extremely con-

servative test that virtually never rejects the null hypothesis. We characterize correlation

matrices that ought to be conservative, but not so conservative as to be useless.

2 Test statistic L2 ¼ jjZ jj2

2.1 Weighted combination of iid χ2(1)s

Let Pi be the one-tailed p-value for testing whether treatment observations tend to be larger

than control observations for the ith continuous baseline covariate, i = 1, . . ., k. Assume that

the corresponding test statistic has a continuous distribution and its underlying distributional

assumptions are satisfied. In the absence of data falsification, the Pi are dependent uniform (0,

1) random variables. Betensky and Chiou [3] evaluate the impact of correlation on chi-squared

and Kolmogorov-Smirnov statistics of uniformity of the Pi. We consider instead a test specifi-

cally targeting too little variability of actual results from expected results, an indication of pos-

sible data falsification.

We begin by transforming the dependent uniforms Pi to dependent standard normals Zi by

Zi = F−1(1 − Pi), where F−1 is the inverse of the standard normal distribution function.

Although the Zi need not have a multivariate normal distribution, they will be approximately

multivariate normal if the test statistics are asymptotically sums of iid random variables and

the sample size dwarfs the number of baseline covariates. Given that our intent is to show the

difficulty of proving data falsification even under the best circumstances, we assume that the Zi
are exactly multivariate normal with mean vector (0, 0, . . ., 0) and nonnegative-definite covari-

ance matrix S whose diagonal elements are 1. That is, the Zi are correlated (unless S is the

identity matrix) but marginally standard normal.

We will suspect data falsification if the Zi are too close to their expected value of 0; i.e., there

is too much balance between arms. The sign of the Zi is not important, so we will be suspicious

if Z2
i is very small for multiple baseline variables. A natural way to combine the Z2

i is through

L2 ¼ jjZjj2 ¼
Pk

i¼1
Z2
i , the squared length of the vector Z of z-statistics for the k baseline

covariates. If the Zi were iid, we could determine whether L2 is “too small” by comparing its

value to the αth percentile of a chi-squared distribution with k degrees of freedom. But the Zi
are dependent, so we must derive the distribution of L2 under a marginal standard normal

assumption, but with arbitrary correlation matrix S. We derive this distribution using stan-

dard results in linear algebra (see, for example, [5]) as follows.

2.2 Distribution of L2

We can find an orthonormal basis e
1
; . . . ; ek of eigenvectors of S and form the orthogonal

matrix Γ whose columns are e
1
; . . . ; ek. Then ΓT SΓ = D, a diagonal matrix whose diagonal

entries λ1, . . ., λk are the eigenvalues of S, which are all nonnegative real numbers because S is
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a nonnegative-definite, symmetric matrix. Therefore,

S ¼ GDGT:

Let S1/2 denote the matrix ΓD1/2 ΓT, where D1/2 is the diagonal matrix whose diagonal ele-

ments are the square roots of those of D. Then Z has the same distribution as S1=2d, where d is

a vector of k iid standard normals, because cov

ðS1=2dÞ ¼ S1=2IðS1=2Þ
T
¼ ðGD1=2GTÞðGD1=2GTÞ ¼ GDGT ¼ S. It follows that

L2 ¼ kZk2
¼ d

TP
d ¼ d

T
GDGTd

¼ ðGTdÞ
TDðGTdÞ

¼ ðZ�ÞTDZ�;

ð1Þ

where Z� ¼ GTd. Also, cov ðGTdÞ ¼ GTIG ¼ I, so the distribution of Z� is that of k iid stan-

dard normals. Eq (2) implies that

L2 ¼
Xk

i¼1

liZ
�2

i ð2Þ

is a weighted sum of squares of iid standard normals. The weights λi are the eigenvalues of S,

which sum to k.

We interpret these eigenvalues in terms of variances of linear combinations of the Zi as fol-

lows. The vector c maximizing the variance of the linear combination c � Z , subject to

jjcjj2 ¼ 1, is c ¼ e
ðkÞ, the eigenvector associated with the largest eigenvalue, λ(k), of S. We can

view c � Z as the projection of Z onto the axis defined by c (Fig 1). The variance of e
ðkÞ � Z is

λ(k). The second largest eigenvalue e
ðk� 1Þ

of S is the maximum variance of linear combinations

c � Z such that 1) jjcjj2 ¼ 1, and 2) c is orthogonal to e
ðkÞ. The variance of e

ðk� 1Þ
� Z is λ(k−1).

Continuing in this fashion, the smallest eigenvalue e
ð1Þ

of S is the maximum variance of linear

combinations c � Z such that 1) jjcjj2 ¼ 1, and 2) c is orthogonal to each of e
ðkÞ; eðk� 1Þ

; . . . ; e
ð2Þ

.

The variance of e
ð1Þ
� Z is λ(1). If there are a few very large eigenvalues and the rest are close to

0, the Zi are highly correlated. On the other hand, if the eigenvalues are all of similar size, the

Zi are close to being uncorrelated.

Summary:

1. The distribution of L2 under correlation matrix S for Z is a weighted sum of iid chi-squared

random variables with 1 degree of freedom.

2. The weights are the eigenvalues of S, which sum to k.

3. If all eigenvalues are 1, the Zi are iid and L2 � w2
k .

4. If k − 1 eigenvalues are 0, the Zi are maximally correlated and L2 � kw2
1
.

2.3 Peakedness as a function of l

We have characterized the distribution of the test statistic L2 in the absence of fraud and under

an assumed correlation matrix S. Next we investigate the peakedness of this distribution. If

the distribution is peaked, then a small value of L2 suggests possible fraud, as small values

would be quite unlikely otherwise. On the other hand, if the distribution of L2 is very dis-

persed, then small values of L2 might be common even under the null hypothesis of no fraud.
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It is critical, therefore, to determine limits on the peakedness of the null distribution to prop-

erly interpret evidence engendered by small values of L2. There are different ways to quantify

peakedness, but perhaps the simplest is based on the variance.

2.3.1 Minimum and maximum variance. We consider next how the variance of L2

depends on the eigenvalues of the correlation matrix of Z . This will be important to evaluate

how misleading it can be to treat p-values for baseline covariates as if they were independent.

Fig 1. Eigenvalues and eigenvectors when k = 2 illustrated with a large number of observations from a bivariate standard

normal distribution with correlation ρ = 0.80. Observations vary most when projected onto the direction vector e
2
¼

ð1=21=2; 1=21=2Þ (solid line). The corresponding variance is λ(2), the larger of the two eigenvalues. The variance of values

projected onto the orthogonal direction vector e
2
¼ ð1=21=2; � 1=21=2Þ (dashed line) is the smaller eigenvalue, λ(1). The sum of

the two eigenvalues is λ(1) + λ(2) = 2.

https://doi.org/10.1371/journal.pone.0239121.g001
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The mean and variance of L2 are

EðL2Þ ¼
Xk

i¼1

liEfw
2ð1Þg ¼ k and ð3Þ

varðL2Þ ¼ V ¼
Xk

i¼1

l
2

i varfw
2ð1Þg ¼ 2

Xk

i¼1

l
2

i : ð4Þ

Thus, the mean of L2 does not depend on the correlation matrix S for the baseline z-scores,

but the variance of L2 does. For this reason, it is important to find the minimum and maxi-

mum values Vmin and Vmax of var(L2) and determine which correlation matrices yield those

extreme values. Because the λi sum to k, �l ¼ ð1=kÞ
P
li ¼ 1. Write V as

V ¼ 2
P
l

2

i � 2k�l2 þ 2k�l2 ¼ 2
Xk

i¼1

ðli �
�lÞ

2
þ 2k

¼ 2ðk � 1Þs2
l
þ sk;

ð5Þ

where s2
l

is the sample variance of the λi. It is clear that V is minimized when li ¼
�l ¼ 1 for

each i. In other words, the independence case, S = I, produces the smallest variance, Vmin = 2k,

of L2. In a sense, this produces the greatest peakedness for the null distribution of L2. To see

the serious implications of this fact, suppose that the observed value of L2 is small. If we

wrongly assume that the z-scores for baseline covariates are independent, then we will be

using the minimum possible variance of L2 to determine whether L2 is implausibly small. Con-

sequently, the observed L2 value might be many assumed standard deviations away from its

mean value of k. The resulting p-value will be tiny, and the level of evidence supporting data

falsification will be greatly overstated if the true correlation matrix S is far from the identity

matrix corresponding to independent z-scores.

To avoid inflating the probability of erroneously suspecting data falsification, we could

assume the correlation matrix S yielding the largest variance of L2. It can be shown that the l

maximizing the variance of L2 assigns value k to one of the λi and 0 to the remaining λis. In

that case, var ðL2Þ ¼ 2
P
l

2

i ¼ 2k2. In summary, the smallest and largest values of var(L2) are:

Vmin ¼ 2k; corresponding to l ¼ ð1; . . . ; 1Þ ð6Þ

Vmax ¼ 2k2; corresponding to l ¼ ð0; 0; . . . ; kÞ: ð7Þ

We will see that using Vmax is almost always too conservative to be useful. Therefore, we

want to select conservative values of V that are not so conservative that they are useless. To see

how to do this, notice that the vectors (1, . . ., 1) and (0, 0, . . ., k) in (6) and (7) are at opposite

ends of a certain spectrum. Imagine two different communities, each with k luxury cars

divided among k people. In one community, everyone has 1 luxury car, and in the other com-

munity, one person has all k luxury cars. Vectors (1, . . ., 1) and (0, 0, . . ., k) correspond to

these least and most polarized distributions. This concept can be formalized as follows. A vec-

tor y is said to majorize another vector x, written x � y, if the ordered values x(1)� . . .� x(k)

and y(1)� . . .� y(k) satisfy
Pk

i¼j xðiÞ �
Pk

i¼j yðiÞ for j = 1, . . ., k, with equality when j = 1. In

other words, y is more polarized (the rich are richer and the poor are poorer) than x. The

smallest and largest vectors, in terms of majorization, with sum k are (y(1), . . ., y(k)) = (1, . . ., 1)

and (0, . . ., 0, k), respectively. The generalization of the ordering of variances in (6) and (7) is

as follows.
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Theorem 2.1. V = var(L2) increases as the vector l of eigenvalues of S becomes more polar-
ized (i.e., increases in the majorization ordering).

The proof follows from D.2 on page 101 of [6].

Therefore, computing the null distribution of L2 assuming that l is one of the larger

(although not the largest possible) vectors in the majorization ordering should be conservative,

but not prohibitively so.

Our treatment in this section implicitly assumed that the distribution of L2 is approximately

normally distributed for large k, which is reasonable for many l because L2 is a linear combi-

nation of iid chi-square random variables with 1 degree of freedom. However, for certain

extreme vectors l such as (0, . . ., k), L2 is not normal. We would like to show, without invok-

ing asymptotic normality, that the distribution of L2 has fatter tails as l becomes more polar-

ized (increases in the majorization ordering). We defer discussion of this technical and

difficult topic to the appendix.

2.4 Simple Ss allowing exact calculation

For any given critical value C, we can compute P(L2� C) analytically without using a normal

approximation for certain classes of correlation matrices S. Equivalently, we can think in

terms of the eigenvalues of S, which, as we have seen, can be interpreted in terms of variances

of projections of the Zi onto directions defined by its eigenvectors. Suppose the total variance

is spread equally among a small number of directions. Then all but a few eigenvalues are 0, and

the remainder all have the same value. For instance, with only 1 direction, all but one eigen-

value is 0, and the nonzero eigenvalue is k. This is the most extreme correlation matrix in

which all Z2
i are identical. More generally, if all variability is focused equally in j directions,

then each of the j nonzero eigenvalues has value k/j. In that case, expression (2) becomes k(Xj/

j), where Xj has a chi-squared distribution with j degrees of freedom. The probability of a type

1 error is

PfkðXj=jÞ � Cg ¼ GjðC=kÞ; ð8Þ

where Gj is the distribution function of 1/j times a chi-square random variable with j degrees

of freedom. The appendix shows that Gj has fatter tails as j decreases. Therefore, the distribu-

tion of L2 has fatter tails if the total variability of Z is spread equally over a smaller number of

directions.

Another relatively simple class of correlation matrices corresponds to the same correlation

ρ for all pairs of z-scores. It can be shown that all but one eigenvalue is 1−ρ, and the remaining

eigenvalue is 1 + (k − 1)ρ. In that case, expression (2) can be written as

ð1 � rÞXk� 1 þ f1þ ðk � 1ÞrgX1; ð9Þ

where Xk−1 and X1 are independent chi-squared random variables with k − 1 and 1 degree of

freedom, respectively. Let Hj and hj denote a chi-squared distribution and density function

with j degrees of freedom, j = 1, . . ., k. From (9), the type 1 error rate is

P ð1 � rÞXk� 1 þ f1þ ðk � 1ÞrgX1 � C½ � ¼

Z

Hk� 1

C � f1þ ðk � 1Þrgx1

1 � r

� �

h1ðx1Þ: ð10Þ

Table 1 uses Eqs (8) and (10) to compute the inflation of the type 1 error rate when one

erroneously assumes that the z-scores comparing baseline covariates across arms are indepen-

dent, when the true S is either equicorrelated or has all variability focused in a few directions.

For the rows labeled by directions, the true S corresponds to total variability of z-scores

divided equally among 1, 2, or 3 directions. For rows labeled by ρ, the z-scores for baseline
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comparisons all have the same pairwise correlation ρ. For example, the “1 direction” row

shows that if critical value C is computed assuming the Zi are independent, but the truth is that

all variability of the Zi is focused in only 1 direction, the actual type 1 error rate is 47.0 percent

or 62.3 percent if k = 10 or k = 100, respectively. On the other hand, if the true S has the same

pairwise correlation ρ = 0.50 for all pairs, the true type 1 error rate is 15.1 percent or 54.1 per-

cent for k = 10 or k = 100, respectively. The probability of falsely becoming suspicious increases

as the Zi become more correlated.

On the other hand, if one assumes perfect correlation and sets the critical value using Vmax,

the test becomes extraordinarily conservative. Table 2 shows that when k = 25, the actual type

1 error rate of the Vmax test if the z-scores have common correlation ρ = 0.75 is 7.9 × 10−20

instead of 0.05. In other words, if we want to protect against the most drastic correlation

matrix Sij = 1 for all i and j, the test becomes incredibly conservative even if the true correla-

tion matrix still has unrealistically high correlation. Likewise, even if the true correlation

matrix has all variance focused in only 3 directions, the Vmax test has ultraconservative type 1

error rate 0.0003. Remember that the L2 test is being used as a diagnostic to see if further inves-

tigation is warranted. Further investigation would provide an estimate of S that could be used

to compute the true distribution of L2, resulting in a much more accurate test. Thus, a reason-

able option for the diagnostic test is to make a conservative assumption, such as that all corre-

lations are 0.75 or all variability is focused equally in only 3 directions. This is almost

guaranteed to overstate the degree of correlation in a real clinical trial.

2.4.1 Example. Fujii et al. [7] was a study randomizing 24 dogs to one of three doses of

midazolam to evaluate the effect of midazolam on contractility of the diaphragm. Table 3

shows baseline means and standard deviations in each of the three arms for each of 8 continu-

ous variables. There appears to be little variability across arms. We apply our test to dose

Table 1. Probability of suspecting fraud (that is, L2� C) when C is determined assuming the Zi are independent. The true S either has all variability focused equally in

1, 2, or 3 directions, or each off-diagonal element has value ρ.

Truth k = 1 k = 5 k = 10 k = 25 k = 100

1 direction .050 .368 .470 .555 .623

2 directions — .205 .326 .443 .541

3 directions — .124 .243 .375 .495

ρ = 0.00 .050 .050 .050 .050 .050

ρ = 0.25 .050 .059 .073 .112 .277

ρ = 0.50 .050 .090 .151 .310 .541

ρ = 0.75 .050 .182 .338 .496 .599

https://doi.org/10.1371/journal.pone.0239121.t001

Table 2. Probability of suspecting fraud (that is, L2� C) when C is determined assuming Sij = 1 for all i, j (i.e., perfect correlation). The true S either has all variability

focused equally in 1, 2, or 3 directions, or each off-diagonal element has value ρ.

Truth k = 1 k = 5 k = 10 k = 25 k = 100

1 direction .050 .050 .050 .050 .050

2 directions — .004 .004 .004 .004

3 directions — .0003 .0003 .0003 .0003

ρ = 0.00 .050 2.8 × 10−6 2.3 × 10−11 2.3 × 10−26 1.2 × 10−100

ρ = 0.25 .050 3.5 × 10−6 4.7 × 10−11 2.8 × 10−25 3.3 × 10−95

ρ = 0.50 .050 6.4 × 10−6 2.2 × 10−10 2.6 × 10−23 1.1 × 10−86

ρ = 0.75 .050 2.2 × 10−5 4.1 × 10−9 7.9 × 10−20 4.9 × 10−72

https://doi.org/10.1371/journal.pone.0239121.t002
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groups 1 and 2. For each variable, compute a one-tailed p-value Pi using an unpaired t-statistic

with alternative hypothesis that group 2 has a higher mean than group 1. Then convert each p-

value to a z-score by Zi = F−1(1−Pi), and compute the test statistic L2 ¼
P8

i¼1
Z2
i . We find that

L2 = 0.2556. If we erroneously assume independence of baseline covariates, and therefore of Z
statistics, the p-value is Pðw2

8
� 0:2556Þ � 10� 5. This overstates the strength of evidence for

fraud. On the other hand, assuming perfect correlation between z-scores for baseline covari-

ates almost certainly understates the evidence for fraud. That p-value is

Pð8w2
1
� 0:2556Þ � 0:14. We feel confident that a real randomized experiment would not

result in all correlations being 0.9. Therefore, making the assumption of a common ρ of 0.9

should still be highly conservative. The p-value using (10) with ρ = 0.9 is 0.0055. In other

words, even under what we feel is an unrealistically large degree of correlation, namely 0.9 for

all pairs, the evidence for fraud certainly seems sufficient to warrant further investigation.

3 Number of significant z-scores

We have focused on L2 as a test statistic for detecting cheating, but other goodness of fit statis-

tics such as those considered by Betensky and Chiou [3] and Bland [4] have similar behavior.

A particularly simple statistic is the number J of statistically significant z-scores. We might be

suspicious if the number of continuous baseline covariates is large and none result in a statisti-

cally significant difference between arms. Suppose these z-scores are equicorrelated with non-

negative correlation ρ. Then Z1, . . ., Zk have the same distribution as X + �1, . . ., X + �k, where

X and the �i are mutually independent normal random variables with zero means and vari-

ances s2
X ¼ r, s2

�
¼ 1 � r. Let zα satisfy 1−F(zα) = α. Given X = x, the indicators I(Zi> zα) are

iid Bernoulli (p) random variables, where

p ¼ pðxÞ ¼ PðZ > zajX ¼ xÞ ¼ Pðxþ � > zaÞ

¼ 1 � F
za � x
ffiffiffiffiffiffiffiffiffiffiffi
1 � r
p

� �
ð11Þ

The specific distribution function F(p) for the random variable P = p(X) is unimportant. The

important fact is that P has mean α, as the following calculation shows:

EðPÞ ¼ EfPðZ > za jXÞg ¼ PðZ > zaÞ ¼ a:

Table 3. Fujii et al. [7] study in dogs uncovered by Carlisle et al. [2]. Shown are the eight continuous baseline

covariates.

Continuous var. Dose Group 1 Dose Group 2 Dose Group 3

mean (sd) (n = 8) (n = 8) (n = 8)

HR (bpm) 141 (15) 143 (10) 140 (12)

MAP (mm Hg) 130 (15) 132 (12) 131 (11)

RAP (mm Hg) 5 (2) 5 (2) 5 (2)

MPAP (mm Hg) 12 (2) 12 (2) 12 (2)

PAOP (mm Hg) 8 (2) 8 (1) 8 (2)

CO (L/min) 2.2 (0.5) 2.2 (0.4) 2.3 (0.4)

Frequency (Hz) 20 15.5 (2) 15.3 (1.8) 15.4 (2.1)

Frequency (Hz) 100 21.1 (2) 20.9 (2.2) 20.9 (2.1)

https://doi.org/10.1371/journal.pone.0239121.t003
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Accordingly, the distribution of J is a mixed binomial:

PðJ ¼ jÞ ¼
Z

ð
k
j Þp

jð1 � pÞk� if ðpÞdp; ð12Þ

where f(p) is the density function corresponding to distribution function F(p). Note that
R
pf

(p)dp = α.

Under independence, the number of significant Zi has an ordinary binomial distribution

with parameters k and α. let J and J0 denote random variables from the mixed binomial (12)

and the unmixed binomial bin(k, α). To see that extreme results are more likely for J than for

J0, note that by Jensen’s inequality, for k> 1,

PðJ ¼ 0Þ ¼ EfPðJ ¼ 0jPÞg ¼ Efð1 � PÞkg

> f1 � EðPÞgk ¼ ð1 � aÞk ¼ PðJ0 ¼ 0Þ:
ð13Þ

More generally, Shaked [8] has shown that a mixed binomial has fatter tails than an ordinary

binomial with the same mean. This explains the common phenomenon of observing what

appear to be too few or too many statistically significant baseline differences in clinical trials.

Therefore, if one falsely assumes that the Zi are independent, the chance of falsely suspecting

fraud will be inflated.

4 Discussion

We have proposed a diagnostic for detecting suspiciously low between-arm variability in base-

line covariates in clinical trials. The test statistic L2, the squared length of the vector Z of z-

scores of balance in baseline covariates, has a distribution that depends on the correlation

matrix S of Z only through its eigenvalues. We confirm analytically for L2 what is demon-

strated through simulation in [3–4] for similar goodness of fit tests applied to baseline covari-

ates in clinical trials when no information about correlations is available. Assuming

independence between covariates (and, therefore, between the Zi) results in an unacceptably

high probability of falsely suspecting fraud. In fact, the distribution of L2 has thinnest tails

when one falsely assumes that z-scores for baseline covariates are independent, and fattest tails

when one assumes the most extreme possible correlation. We draw two conclusions: 1) one

should never conclude fraud solely because L2 is unusually small under the independence

assumption and 2) to feel confident that the Zi are too small to have occurred by chance, L2

must be unusually small even assuming unrealistically high correlation. Assuming perfect cor-

relation produces a test that virtually never triggers further investigation. Therefore, we suggest

using a practical upper bound on the correlation matrix such as all correlations equal to 0.75

or all variability focused equally in only 3 directions.

The final verdict will almost always be based on the totality of evidence. The case made by

Bolland et al. [1] was based on numerous trials by the same authors that contained warning

signs such as suspiciously fast enrollment and few deaths and dropouts despite recruiting

older patients with substantial comorbidity. Our test statistic is a useful diagnostic that can be

used in conjunction with other evidence to bolster the case for data falsification.

A Appendix: Fat-tailed distributions

The argument in Section 2.3 that L2 should have fatter tails as l becomes more polarized was

based on approximate normality of L2 for large k. But if l ¼ ð0; . . . ; 0; kÞ, L2 has the distribu-

tion of k times a chi-squared variate with 1 degree of freedom, which is not normal. This
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section addresses whether L2 has fatter tails as l becomes more polarized even without the

approximate normality assumption.

The first problem lies in defining “fatter tails.– This is easy for normal distributions or

other distributions symmetric about their mean: the same mean and larger variance implies

fatter tails. For asymmetric distributions such as those of linear combinations of chi-squared

random variables, we must use a different definition. One possibility is the following.

Definition A.1. Distribution function F2 has fatter tails than distribution function F1,

denoted by F1 <
f

F2 or X1 <
f

X2, if there exists a number x� such that F2(x)� F1(x) for x� x�,
and F2(x)� F1(x) for x> x�.

In other words, F1 <
f

F2 if the left tail F2(x) is at least as large as the left tail F1(x) for all x�
x�, and the right tail 1−F2(x) is at least as large as the right tail 1−F1(x) for all x> x�. Another

way of expressing this fact is that if F1−F2 has any sign changes, then there is exactly one, and

the sequence of signs is −, + as x increases.

Bock, et al. [9] conjectured, but did not prove the following.

Conjecture A.1. (Bock et al. [9]) if Z�
1
; . . . ;Z�k are iid standard normals and l

1
� l

2
, then

l
1
� Z�2 <

f
l

2
� Z�2.

Theorem 1 of Roosta-Khorasani and Szekely [10] is closely related, but it shows that large

values are more likely for l
2
� Z�2 than for l

1
� Z�2. We are interested in the opposite tail,

namely that very small values are more likely for l
2
� Z�2 than for l

1
� Z�2.

Although we have been unable to prove Conjecture A.1 in complete generality, empirical

evidence and heuristic arguments support its veracity. For example, we investigated the k = 2

case using an extensive grid of possible values of l
1

and l
2

and computing the distributions of

l
1
� Z�2 and l

2
� Z�2 through numerical integration. For k = 3, we repeatedly generated ran-

dom vectors l
1

and l
2

from a simplex in a way that l
1
� l

2
, and used simulation to compute

the distributions of l
1
� Z�2 and l

2
� Z�2. Further details are available from the authors.

One special case of Conjecture A.1 is when all of the variability of Z is concentrated equally

in each of j directions. In that case, the distribution of L2 is ðk=jÞv � Z�2, where v contains j
ones and k−j zeroes. Since v � Z�2 has a chi-squared distribution with j degrees of freedom, L2

is kðw2
j =jÞ, where w2

j denotes a chi-squared random variable with j degrees of freedom. Thus,

Conjecture A.1 says that w2
j =j has fatter tails as j diminishes. Although we are unable to prove

Conjecture A.1, we prove this special case at the end of the appendix.

Theorem A.1 w2
j =j

f
< w2

i =i for integers i, j, i< j.
Another important special case of Conjecture A.1 is when all pairs (Zi, Zj) have the same

correlation ρ� 0. In that case, the eigenvalue vector is (1−ρ, . . ., 1−ρ, 1 + (k−1)ρ), which

increases in the majorization ordering as ρ increases. The conjecture implies that L2 has fatter

tails as ρ increases. Eq (9) shows that L2 ¼ tðw2
1
=1Þ þ ð1 � tÞðw2

k=kÞ, where τ = {1 + (k−1)ρ}/k.

Therefore, Conjecture A.1 applied to the special case of equicorrelated Zis is equivalent to

tðw2
1
=1Þ þ ð1 � tÞðw2

k=kÞ having fatter tails as τ increases from 1/k to 1.

It should be noted that one could define fatness of tails of a distribution function in ways

other than Definition A.1. For example, suppose that E{ψ(X)}� E{ψ(Y)} for every convex

function ψ such that the expectations exist. Then not only is the variance of X no greater than

that of Y, but the same is true for the fourth central moment, the sixth central moment, etc.

This is one way of formulating the idea that the distribution function of Y has fatter tails than

that of X.

It is very easy to prove, using the alternative definition above, that assuming the Zi are inde-

pendent produces the thinnest tailed distribution. This is demonstrated in Theorem A.2.
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Theorem A.2 Let Z�
1
; . . . ;Z�k be iid standard normals and Yl ¼ l � ðZ�2

1
; . . . ;Z�2k Þ, where

Pk
i¼1
li ¼ k. Then for any convex function ψ such that EfcðYlÞg is finite for all l, EfcðYlÞg is

largest when l ¼ ð0; . . . ; 0; kÞ.
This follows from the definition of convex function: for any u1, . . ., uk and nonnegative w1,

. . ., wk with ∑wi = 1, ψ(∑wi ui)� ∑wi ψ(ui). Set wi = λi/k, i = 1, . . ., k. Then

E c
Xk

i¼1

liZ
�2

i

 !( )

¼ E c
Xk

i¼1

wikZ
�2

i

 !( )

�
Xk

i¼1

wiEfcðkZ
�2

i Þg ¼
Xk

i¼1

wiEfcðkZ
�2

k Þg

¼ EfcðkZ�2k Þg
Xk

i¼1

wi¼ EfcðkZ�2k Þg

¼ E½cfð0; . . . ; 0; kÞ � ðZ�2
1
; . . . ;Z�2k Þg�;

ð14Þ

completing the proof.

Proof of Theorem A.1

Let fj(x) be the density of l
ðjÞ
� Z�2, where fðk � jÞ=kglðjÞ ¼ ð0; . . . ; 0; 1; . . . ; 1Þ has k−j

zeroes followed by j ones. The distribution of fðk � jÞ=kglðjÞ � Z�2 is chi-squared with j degrees

of freedom. It follows that

hðxÞ ¼
fj� 1ðxÞ
fjðxÞ

¼

ffiffiffi
2
p

Gðj=2Þ
j� 1

j

� �j=2

Gðj=2 � 1=2Þ

ffiffiffiffiffi
j� 1

k

q

8
><

>:

9
>=

>;

exp x
2k

� �

ffiffiffi
x
p

� �

ð15Þ

The derivative of g(x) = exp(x/2k)/x1/2 is negative for 0� x< k and positive for x> k. Thus, g
(x) decreases for x< k and increases for x> k. Moreover, g(x) has a limit of +1 as either x #
0 or x!1. These facts also hold for h(x), which is just a positive constant times g(x). It fol-

lows that the number m1 of x such that h(x) = 1 is either 0, 1, or 2. But m1 cannot be 0 or 1

because that would imply that fj−1(x) > fj(x) for all x or for all but one x, contradicting the fact

that fj−1(x) and fj(x) both integrate to 1. Therefore, h(x) = 1 for exactly two values, x = x1 and x
= x2, x1 < x2.

Let Fj−1(x) and Fj(x) be the distribution functions corresponding to the densities fj−1(x) and

fj(x). Because fj−1(x) > fj(x) for x< x1 and x> x2, Fj−1(x) > Fj(x) for x< x1 and Fj−1(x)< Fj(x)

for x> x2. Because Fj−1 and Fj are continuous, there must be a point x� for which Fj−1(x�) =

Fj(x�). Necessarily, x1 < x� < x2. But fj−1(x) < fj(x) for x 2 (x1, x2), so if Fj−1(x�) = Fj(x�), then

F(j−1)(x) < Fj(x) for all x 2 (x�, x2). But we have already established that Fj−1(x)< Fj(x) for x>
x2, so Fj−1(x) < Fj(x) for x> x�. Putting these facts together, we have established that

Fj� 1ðxÞ � FjðxÞ

> 0 if x < x�;

¼ 0 if x ¼ x�;

< 0 if x > x�:

8
><

>:

This completes the proof.
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