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Abstract
Objectives: Observational data derived from patient electronic health records (EHR) data are increasingly
used for human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) research. There
are challenges to using these data, in particular with regards to data quality; some are recognized, some
unrecognized, and some recognized but ignored. There are great opportunities for the statistical community to
improve inference by incorporating validation subsampling into analyses of EHR data.
Methods: Methods to address measurement error, misclassification, and missing data are relevant, as are
sampling designs such as two-phase sampling. However, many of the existing statistical methods for
measurement error, for example, only address relatively simple settings, whereas the errors seen in these
datasets span multiple variables (both predictors and outcomes), are correlated, and even affect who is
included in the study.
Results/Conclusion:We will discuss some preliminary methods in this area with a particular focus on time-
to-event outcomes and outline areas of future research.
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Introduction

Routinely collected data, such as data derived from electronic health records, clinical medical charts, or
administrative databases, are being increasingly used in human immunodeficiency virus (HIV) research. Their
use allows investigators to obtain large amounts of data at relatively low costs, and therefore study questions
that would not otherwise be feasible to investigate. A few examples presented at the 2019 Conference on
Retroviruses and Opportunistic Infections (CROI) include studies of the continuum of care (MacKellar et al.
2019), studies of deaths due to opioids among persons living with HIV (Bosh et al. 2019), and studies of
dolutegravir use among women at conception and its potential relationship with neural tube defects in their
newborn infants (Mofenson 2019). These studies relied on the use of routinely collected data. Funding agencies
have realized the importance of these data sources and have contributed significant resources to establishing
networks such as the International Databases to evaluate acquired immunodeficiency syndrome (AIDS)
consortium (www.iedea.org).

The use of routinely collected data for HIV research also comes with challenges (Weng et al. 2012).
One of the greatest challenges is that these data are prone to errors that in some cases could substantially
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change study conclusions, and clinical care, if the data are taken at face value. A seminal example in the
HIV literature comes from using data collected as part of routine care from HIV clinics to study mortality
in the presence of high rates of loss to follow-up. Geng et al. (2008) traced a random sample of patients in
Uganda who were lost to follow-up and found that a large portion of them had died; naive estimates
using the readily available clinical data and standard Kaplan-Meier estimators of survival, which treat
these lost individuals as independently censored, severely underestimated the probability of death after
antiretroviral therapy (ART) initiation; three-year estimated mortality was approximately 2% using the
clinic data vs. 12% when corrected based on the tracing data. Data errors, whether in the outcomes or the
exposures, have the potential to bias study results when not addressed in the analytical methods used for
analysis.

Several research groups have investigated the quality of routinely collected HIV data by performing data
audits, also referred to as source data verification or data validation. The Caribbean, Central and South
America network for HIV epidemiology (CCASAnet), for example, has sent teams of auditors to each of their
study sites to compare data sent to the data coordinating center with data in the clinical medical records
(Duda et al. 2012). Other groups have engaged in similar types of data quality initiatives (e.g., Kiragga et al.
2011); however, data validation can be expensive and time-consuming, so the practice is unfortunately not
widespread (Ledergerber 2012). When using the electronic health record (EHR) as a data source, in-
vestigators often validate a subsample of records for a few key variables by going in detail through the EHR,
including text fields; this information is often then used to confirm that diagnoses are accurate or to develop
and validate computational phenotyping algorithms used to classify diagnoses to large numbers of patients
throughout the EHR. For example, NA-ACCORD (IeDEA’s North American region) validated end stage liver
disease (ESLD) and end stage renal disease (ESRD) for a randomly selected 6% of their patients through
comprehensive medical record reviews; they also examined algorithms to screen for events with readily
available data to avoid infeasible chart review for the entire cohort (Kitahata et al. 2015). They found that
their algorithms for ESRD had positive and negative predictive values of 82 and 100%, respectively, and 27
and 100% for ESLD.

There are important opportunities for statisticians to make a positive impact on studies using error-prone
observational data. Two key areas of impact are 1) incorporating validation data into analyses, and 2)
designing efficient validation studies. Once an investigator has performed an audit, they are often left
wondering what to do with the information. Often the audit results only make it into discussions of study
strengths and limitations. However, there is a rich statistical literature on how to incorporate data from a
validation study into a larger study; the measurement error and missing data literatures are relevant (e.g.,
Carroll et al. 2006; Little and Rubin 2002). Designing an audit can be thought of as designing a two-phase
sample; there is also a rich statistical literature on efficient two-phase sampling, which could be applied to
validation sampling of routinely collected data to improve study estimates (e.g., Breslow and Chatterjee 1999;
Gilbert, Yu, and Rotnitzky 2014; MacNamee 2005; Reilly 1996; Xu, Hui, and Grannis 2014; Zhao and Lipsitz
1992).

In practice, however, there are complications with the errors of routinely collected data that make it
difficult to directly apply many existing methods. Some of this is because there are often errors across
multiple variables – particularly when these variables are derived from the same error-prone underlying
variables – and the existence and magnitude of these errors are correlated. We will provide a detailed
illustration in Section 2. Similarly, complications specific to the use of routinely collected data also make
designing efficient validation samples in this setting somewhat different from what has been studied
elsewhere.

The purpose of this article is to highlight opportunities and challenges for dealing with error-prone
routinely collected data in HIV research.Wewill describe some preliminary work in this area, with a particular
focus on methods for time-to-event outcomes, and outline some impactful areas for statistical and imple-
mentation science research. In Section 2 we provide a real data illustration, in Section 3 we discuss estimation,
in Section 4 we discuss validation designs, and in Section 5 we provide a few general conclusions. This
manuscript is based on a presentation given at the 2019Workshop on Statistical Challenges and Opportunities
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in HIV/AIDS Research in the Era of Getting-to-Zero HIV Infections organized by the United States National
Institute of Allergy and Infectious Diseases.

Illustration

CCASAnet is a research network that includes clinical data from HIV positive individuals living with HIV in
Latin America, with sites in Argentina, Brazil, Chile, Haiti, Honduras, Mexico, and Peru. The goal of CCA-
SAnet is to use this shared repository of HIV data to answer questions about the characteristics of the
regional HIV epidemic. CCASAnet data are assembled at each site and then sent to a data coordinating center
for merging and analysis. CCASAnet data protocols closely follow those of other HIV cohorts (http://iedea.
github.io, https://www.hicdep.org). In short, CCASAnet data include a table of demographics and time-
invariant data (e.g., date of HIV diagnosis), tables with laboratory information (e.g., repeated CD4 count and
HIV-1 RNAmeasurements over time), a table with clinic visit information, a table with antiretroviral therapy
data (e.g., regimen and dates of starting/stopping the regimen), a table of clinical events (e.g., onset of
tuberculosis, Kaposi sarcoma, and dates), a table with vital status and follow-up information, and other
tables corresponding to specialized data collection stemming from specific projects (e.g., substance abuse
during a particular period of time, pregnancy outcomes). Data from the same patient across tables are linked
with a common personal identification number.

As is common in studies using routinely collected observational data, analysis variables for CCASAnet
studies are often derived from multiple variables across multiple tables. As an example that we will refer to
throughout this manuscript, suppose we are interested in studying the time from ART initiation to an
AIDS-defining event (ADE) and estimating its association with other variables, including CD4 count, at the
time of ART initiation. The time-to-event variable is derived from the date of ART initiation in the ART table,
the date of first ADE based on the clinical events table, and the last visit date or death date if no event
occurred from the vital status table. CD4 count at ART initiation is derived from tables of laboratory values as
the CD4 measurement taken the closest to the date of ART initiation, within a certain window. Patient
eligibility for the study is also derived from the database. For example, one might only include patients who
start ART prior to an ADE.

CCASAnet has performedmultiple waves of data quality audits. An audit team from the data coordinating
center, usually consisting of a clinician and an informaticist, typically spends about two days at each site
comparing data sent to the coordinating center with data in the clinical medical records for a subset of records
randomly selected by the data coordinating center. Audit procedures and findings have been published
previously (Duda et al. 2012).

In 2013–2014, CCASAnet conducted on-site audits at seven HIV research sites. A total of 250 records were
audited, including 14,995 values across 23 variables. The data audits uncovered some errors, with an overall
discrepancy percentage of approximately 17%. The discrepancies included data mismatches (i.e., value in the
database does notmatch the value in the charts) (6%), observations found in source document that were not in the
database (7%), or values that couldnot beverified in the sourcedocument (4%). Somevariableswerequite reliable:
e.g., sex at birth, which was found to be incorrect in only three (1%) records. Other variables, however, were much
moreprone to errors. For example, CD4cell countwas incorrect for 10.5%of entries,ART start datawas incorrect for
20.5%of entries, anddate ofADEwas incorrect for 50%of entries (4%datemismatches, 43%ADEdiscovered in the
clinical charts that was not in the database, and 3% ADE reported in database but not found in clinical charts).

Throughout, we assume that the audit values are correct, but this is not always the case. CCASAnet has
also done studies that compare audit results between outside-auditors and self-audits, where investigators at
the site audit their own data; we have found high, but not perfect, concordance (94%) between auditors
(Lotspeich et al. 2019), and concordance does not guarantee correctness. And, of course, some events do not
make it into the medical records. While data discrepancies may not be able to be completely resolved, the
information these types of concordance studies provide can be used to inform sensitivity analyses that can
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incorporate varying assumptions about the accuracy of the observed data to evaluate the robustness of study
results across a range of plausible scenarios.

Data errors are not just an issue for international cohorts. For example, we have seen similar non-trivial
error rateswhen validating electronic health record data frompersons livingwithHIV attending the Vanderbilt
Comprehensive Care Clinic (Giganti et al. 2020).

Because analysis datasets use derived variables, errors in the original variables often propagate across
multiple variables, meaning that errors will be dependent across derived variables. Using the example above,
an error in the date of ART initiation will lead to an error in the censored-failure time (Y∗) and likely an error in
CD4 count at ART initiation (X∗). Errors in the date of ADE will lead to additional errors in the censored-failure
time (Y∗) and the ADE indicator (D∗). Finally, errors in date of ART initiation and/or date of ADE may lead to
improper inclusion/exclusion. We denote the true and error prone indicators of inclusion criteria being met as
V and V∗, respectively; true and error prone variables are similarly denoted for other variables and Z denotes
error-free covariates. These interrelated errors likely produce non-additive errors with a complicated corre-
lation structure, and methods to address these errors will likely need to be flexible and not overly reliant on
distributional assumptions about the nature of the error.

Analysis methods

The measurement error literature provides a foundation of methods to incorporate validation data into ana-
lyses, but much work remains to be able to address the full complexity of our setting with dependent errors
acrossmultiple variables. For example, for time-to-event studies with covariatemeasurement error, where (X∗,
Y, D) are available on all subjects and X is available only on a validation sample, the literature is rich with a
variety of methods for addressing this measurement error (e.g., Carroll et al. 2006; Cole, Chu, and Greenland
2006; Prentice 1982; Xie, Wang, and Prentice 2001). There is also a literature that considers errors in the event
indicator (X, Y, D∗) (e.g., Balasubramanian and Lagakos 2003; Gravel et al. 2018; Gu, Ma, and Balasu-
bramanian 2015; Meier, Richardson, and Hughes 2003), and there are a few papers on errors only in failure
times (X, Y∗, D) (Dodd et al. 2011; Hong et al. 2012; Korn, Dodd, and Freidlin 2010; Oh et al. 2018; Skinner and
Humphreys 1999). Gravel et al. (2018) considered error in either the timing or the classification in a competing risk
setting (X,Y∗,D∗). But except for recentwork described below,weare not familiarwithmethods to simultaneously
address covariate and failure time errors (X∗, Y∗, D). Our situation is even more complicated with errors in event
indicators and whether someone qualifies for inclusion in the study (X∗, Y∗, D∗, V∗). In addition, many of the
existingmethodsmake assumptions on the structure of the error (e.g., additive error),which are often not realistic
in our setting. Therefore, it is doubtful that existing methods can be directly applied with the validation data to
correct for data errors in the CCASAnet analysis of time from ART initiation until ADE.

Here we provide a brief summary of some of the statistical methods used to address measurement error,
preliminary work expanding these methods to address correlated errors across multiple variables, and our
thoughts on the methods’ potential to address more complicated settings seen in practice with errors in
routinely collected data. Table 1 provides a quick summary for reference and comparison across the methods.

Moment-based estimators

Moment-based estimators are simple approaches for addressing covariatemeasurement error. With continuous Y

andX andclassicalmeasurement error (i.e.,X*=X+UwhereE(U)= 0,Var(U) � σ2
u is constant, andU independent

of other variables), if themodel E(Y|X∗)= α0 + α1X∗ isfit, then it is well known that α1 � β1σ2
x/(σ2

x + σ2
u), where σ2

x is
the variance of X and β1 is the true association between Y and X that one would obtain from the model E(Y|X)
= β0 + β1X. A simple moment-based correction is then to estimate σ2

x and σ2
u from the validation data, frequently

selectedas a simple randomsample (SRS), and then to divide thenaive estimate of α1 by the estimated attenuation

factor σ2
x/(σ2

x + σ2
u). Moment estimators can also be adjusted to handle stratified SRS. When Y is also measured
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with error and this error is correlatedwith the error inX, it can be shown that the naive estimate of γ1 based on the

regression of E(Y∗|X∗)= γ0 + γ1X∗ has expectation β1σ2
x/(σ2

x + σ2
u) + Cov(Y − Y*,U)/(σ2

x + σ2
u). Therefore, an un-

biased estimate of β1 can be obtained by fitting the naive model to the full dataset, estimating σ2
x, σ

2
u,

1
2 and

Cov(Y−Y*,U) from thevalidationdata, and thenplugging these estimates into the equationof the expectationof γ1
and solving for β1. This approach is easily extended to include other covariates (both error-prone and error-free)
(Shepherd and Yu 2011). To our knowledge, moment-based estimators have not been extended beyond this
relatively simple setting, but their utility/tractability formore complicated settings (e.g., non-additive errors in (X∗,
Y∗, D∗) with time-to-event data) is uncertain.

Regression calibration

Regression calibration (RC) is a popular method to address covariate measurement error due to its simplicity
and wide applicability (Carroll et al. 2006). The idea is to singly impute the unobserved X with an estimate of

Table : Informal summary of analysis methods.

Analysis
method

Key assumptions for consistencya Validation sampling
designsb

Efficiencyd Adaptability/
Flexibilitye

Ease of implementa-
tion with standard
software

Moment-
based
estimators

Outcome model correctly specified,
non-differential additive error, error
model correctly specified, generally
consistent only for linear model

Simple or stratified
random samplingc

Moderate Low Simple

Regression
calibration

Outcome model correctly specified,
non-differential additive error, cali-
bration model correctly specified,
generally consistent only for linear
model

Simple or stratified
random samplingc

Moderate Low Simple

SIMEX Outcome model correctly specified,
non-differential additive error or bi-
nary misclassification, extrapola-
tion function properly specified

Simple or stratified
random samplingc

Varies by
setting

Low Simple

Multiple
imputation

Outcome model correctly specified,
imputation model correctly
specified

Probability-based
sampling

High Moderate Varies by model
complexity

Likelihood-
based
estimators

Outcome model correctly specified,
error model correctly specified

Probability-based
sampling

High Moderate Varies by model
complexity

Bayesian
estimators

Outcome model correctly specified,
error model correctly specified

Probability-based
sampling

High Moderate Varies by model
complexity

Design-based
estimators

Probability-based
sampling, non-zero
sampling probability
for all records

Low to
moderate

High Simple

aKey assumptions for standard approaches to be consistent, recognizing that modifications can be made to relax some
assumptions. By consistency, we mean consistent for the parameter we would estimate if we had correct data on all subjects. We
recognize that design-based estimators make some assumptions (e.g., a regular estimator in the validation sample), but these
assumptions are generally mild and made by the other estimators so we did not include them in this table.
bThe types of validation sampling for which the method is generally applicable.
cCan be adapted to probability-based sampling using inverse-probability weighting when there are non-zero sampling
probabilities for all records.
dEfficiency in terms of variance when assumptions are met and sample size is large.
eAbility to handle a large number of error-prone variables and a wide range of error structures.
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E(X|X*, Z), where Z may be other precisely observed covariates, and perform the desired regression with the
imputed exposure. For linear models that are correctly specified, RC results in asymptotically unbiased esti-
mation. For non-linear models, RC has some asymptotic bias; however, in many settings, the bias is modest
(Prentice 1982; Shaw and Prentice 2012). RC can be applied with a validation sample, typically a SRS or a
stratified SRS, to estimate E(X|X*, Z). We extended RC to address correlated errors in covariates and a
continuous outcome, applying calibration estimators fit on a reliability, validation or calibration subset (Shaw,
He, and Shepherd 2018).We then applied this approach to correlated additive error in both the censored failure

time Y∗ and exposure X∗. In this method, the usual estimate ̂X � ̂E(X|X*, Z) of the unobserved X is obtained,

along with an estimate of the true censored failure time, ̂Y � ̂E(Y |X*, Z), which is used to create calibrated risk
sets in the Cox score equation (Oh et al. 2019). We further refined this method through successive calibrations
across the risk sets, a method previously seen to reduce bias of the regression calibration estimator for
covariate error (Xie, Wang, and Prentice 2001). We found that our RC estimators improved upon the naive
estimator for modest log-hazard ratios, but that for large log-hazard ratios the method had appreciable bias.
Bias can also be seen for RC when the distribution of the errors is not well-approximated by a normal
distribution (Shaw and Prentice 2012). Given these biases observed with correlated errors in X∗ and Y∗, and
more generally with RC, extensions of RC to also address errors in D∗ and V∗ may not be particularly fruitful.

SIMEX

Simulation and extrapolation (SIMEX) is an approximate method where one incorporates additional error into
an error-prone variable through simulation, estimates the relationship between the error variance and coef-
ficient estimates, and then extrapolates this relationship to obtain estimates when the error variance is zero
(Cook and Stefanski 1994). The variance of the error in the observed data is either assumed known or estimated
using a validation sample based on SRS. SIMEX has generally been applied to address covariate measurement
error (e.g., Alexeeff, Carroll, and Coull 2016; He, Yi, and Xiong 2007; Parveen, Moodie, and Brenner 2017),
although in recent work we used it to address measurement error in the observed censored failure time (Oh
et al. 2018). To apply SIMEX in our setting with errors across multiple variables, one would simulate multi-
dimensional, correlated error and assess the relationship between the error variance-covariance matrix and
coefficient estimates. For example, with additive errors in continuous Y and X, one would simulate data
varying the variance of the errors inY andX and their covariance. Onewould estimate the relationship between
these various errors and the coefficient of interest and then extrapolate back to the setting where there is no
error. Even with this relatively simple setting with additive, correlated errors in Y and X, interesting analytical
issues arise, as the extrapolation is across multiple dimensions. Holcomb (1999) describes a bivariate SIMEX
method in which the relationship between two variables (X∗, Y∗) that were themselves derived from a common
set of error-prone variableswas investigated. However, addressing errors in (X∗, Y∗,D*,V*), as in our CCASAnet
time-to-event study, using SIMEX seems particularly challenging because of both the dimension and mix of
misclassification and measurement error.

Multiple imputation (MI)

Measurement error can be thought of as a missing data problem (Carroll et al. 2006), where we have complete
data (X∗, Y∗,D∗,V∗,X, Y,D,V, Z) on a subsample of validated records and incomplete data (X∗, Y∗,D∗,V∗, Z) for
the remainder. Because validation subsets are selected by design, the missing data mechanism is missing at
random (MAR), and standard missing data methods are applicable (Little and Rubin 2002). If the validation
sample is a SRS then the data are actually missing completely at random (MCAR); but a strength of multiple
imputation (MI) is that it can handle other, more efficient MAR sampling designs, which will be discussed in
Section 4.MI has been used to account formisclassified binary and continuous outcomes (Edwards et al. 2013);
and in time-to-event models, covariate misclassification (Cole, Chu, and Greenland 2006). In earlier work, we
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applied MI to address correlated errors in X∗ and Y∗ (Shepherd, Shaw, and Dodd 2012). In recent work, we
applied MI to address correlated errors in X∗, Y∗, D∗, and V∗ (Giganti et al. 2020). In that analysis, we built
imputation models based on simplified discrete-time failure models that allowed us to incorporate the error-
prone values of these variables and many additional time-varying covariates to impute the correct values.
Using the CCASAnet time from ART to ADE example, indicators of ART start and an ADE would be imputed
(yes/no) in each month based on time-fixed and time-varying covariates and the error-prone values of these
variables in the unvalidated data. A strength of MI is that it is able to address fairly complicated settings.When
multiple variables are derived from underlying original variables, one can impute those original variables
(e.g., month of ART initiation or ADE) and re-derive analysis variables (e.g., time from ART initiation to ADE),
thus creating realistic dependencies between imputed variables (Van Buuren 2012). In addition, the unvali-
dated value of the variable is often a very good predictor of the correct value of that variable. There are some
caveats to using MI, however. The key assumption underlying unbiased estimation for MI is that the impu-
tation model is properly specified. In practice, it can be hard to avoid model misspecification. There are often
bias-variance trade-offs to consider. In addition, the standard Rubin’s rules formulas for computing the
variance of MI estimators are often biased because of incompatibility (also known as uncongeniality) between
the imputation and analysis models (Xie and Meng 2017). This problem can be corrected using alternative
variance estimators (Robins and Wang 2000), but these can be complicated to implement (Giganti and
Shepherd 2020).

Likelihood-based estimation

Another approach for addressing measurement error is to put models on the various components of the error,
as well as the outcome, and employ a maximum likelihood approach to estimate the parameters of interest.
One can consider the error-prone data as auxiliary variables that can improve estimation based on the
likelihood of the observed error-free true data, where the error-free data is obtained at the second phase of a
two-phase sampling design (e.g. validation subset). The general form of the likelihood for two-phase samples
is well-known (Scott and Wild 1997). Likelihood-based estimation can handle any sampling that, conditional
on the error-prone data, is independent of the correct data (i.e., the unvalidated data are MAR). Most prior
likelihood-based work has not considered errors in X∗ and Y∗, with the exception being a paper by Tang et al.
(2015), that considered binary X∗ and Y∗, both of which are misclassified with errors both differential and
dependent; their approach is fully parametric. Others have proposed semiparametric solutions that can be
applied to situations with errors only in X∗ (Tao, Zeng, and Lin 2017). In recent work, we have extended these
semiparametric methods to handle correlated errors in X∗ and Y∗, for general X∗ and continuous (Tao et al.
2020) or binary (Lotspeich et al. 2020) Y∗. These approaches leave unspecified themodel for the distribution of
the errors conditional on other variables. Hence, they are more robust than fully parametric models, but still
quite efficient. We hope to extend them to time-to-event settings where there may also be misclassification of
D∗ to be able to handle situations such as the CCASAnet time-to-ADE analysis. Suchmodels are feasible, but in
practice it may prove difficult to propose realistic and tractable models; estimates are biased if models are not
properly specified. These semiparametric techniques also have difficulties including many covariates, and
may require data reduction techniques in practice. Boe, Tinker, and Shaw (2020) considered a combination of
regression calibration with a likelihood approach to handle both misclassified discrete time to event outcome
and exposure error. Huang et al. (2018) considered the problem of a misclassified outcome in EHR data and
proposed an integrated likelihood approach that integrates out nuisance parameters, in their case the un-
known sensitivity and specificity of an outcome classification algorithm. Such an approach is related to other
likelihood-based approaches mentioned above except that it does not jointly model the error-prone and error-
free data, but incorporates uncertainty in the sensitivity and specificity estimates through the use of a prior that
is placed in the integrated likelihood. Similar approaches may be useful to explore for our setting, though
computational complexity, already a challenge for the misclassified outcome, will likely also be a challenge

Shepherd and Shaw: Errors in multiple variables in HIV cohort and electronic health record data 7



when there are errors in multiple variables. And choosing priors for complicated settings with errors across
multiple variables is somewhat daunting.

Bayesian estimation

The Bayesian paradigm offers a conceptually simple approach to handling measurement error. One can factor
the joint density of the data (X∗, Y∗, D∗, X, Y, D, Z) in a way that allows one to specify separate models for
exposure, outcome and measurement error. With these models and specified prior distributions for the un-
known parameters, one derives the posterior distribution for the parameters of interest from the observed data.
Whether or not themodel has exposure measurement error only, outcome error only, or both, does not change
the basic approach. Gustafson (2003) provides an overview for Bayesian methods that handle exposure
measurement error. Bartlett and Keogh (2018) outline several advantages of the Bayesian approach over
standardmeasurement error correction approaches, including regression calibration,multiple imputation and
likelihood approaches. These advantages include a flexiblemodeling framework, the ability to sample directly
from the posterior distribution and not rely on large sample assumptions, an integrated framework to handle
error and missing data, and practical computation with available software. As a likelihood-based approach,
Bayesian methods can handle any standard two-phase sampling design (i.e., MAR); however, they do require
extensive parametric model specifications, which may be difficult to realistically specify in practice. For
example, correct specification of the joint likelihood of (X∗, Y∗, D∗, X, Y, D, Z) in the CCASAnet time-to-ADE
analysis would be daunting.

There is a large body of work that focuses on how to handle covariate measurement error and
misclassification (Gustafson 2003), including more recent works that look at addressing covariate error in
propensity scores (Hong, Rudolph, and Stuart 2017) and a mixed effects quantile regression approach to
handle covariates measured with error and an outcome subject to right censoring, with application to HIV/
AIDS data (Tian, Tang, and Tian 2018). Similar to the frequentist framework, there is comparatively less
work focused on outcome error. Speybroeck et al. (2013) outlined a Bayesian approach for estimating
prevalence when the disease outcome is subject to misclassification. Others have considered Bayesian
methods for estimating the relationship between a misclassified response and precise covariates (e.g., see
Daniel Paulino, Soares, and Neuhaus 2003; Gerlach and Stamey 2007; Li et al. 2019). Hubbard et al. (2019)
developed a Bayesian latent class model for binary outcome classification (phenotyping) for the EHR
setting, where no validation data were available and covariates were subject to high levels of missingness
according to a missing not at random pattern. Such a framework has the potential to be expanded to also
include error-prone or misclassified covariate data. Important challenges for settings with more complex
error structures may remain for this approach; in particular, model identifiability is a known challenge for
latent class models (Gustafson 2005) and model identifiability for latent class models with misclassified
outcomes is an active area of research for both Bayesian and non-Bayesian frameworks (Duan et al. 2019;
Xia and Gustafson 2018).

Design-based estimation

Design-based estimation includes inverse probability weighting (IPW) and generalized raking, which is some-
times called ‘calibration’ in the survey sampling literature (Sarndal 2007). If certain records are more likely to be
validated than others (e.g., cases are over-sampled), then it is important to account for the sampling design in the
analysis. Someof themethods discussedabove naturally do this (e.g., likelihood-based estimation), but others do
not without some tweaks (e.g., moment-based estimation). The most popular way to account for the design is to
use IPW. Let Ri be the indicator that a record i=1,… , n is in the validation (phase 2) sample, let πi be its sampling
probability, andUi(β) be an estimating equation for the parameter of interest β. Then the IPWestimator solves the
equation ∑n

i�1RiUi(β)/πi � 0. However, IPW is known to be inefficient since it ignores the information in the
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unvalidated data; a more efficient design-based estimator is to employ generalized raking (Deville, Särndal, and
Sautory 1993). The basic idea behind generalized raking is to calibrate the inverse probability weights using an
auxiliary variable available in the full cohort that contains information useful for estimating the target parameter
of interest. Specifically, from the larger cohort (i.e., the phase 1 sample), we derive an auxiliary variable Ai with
information useful for estimation. To gain efficiency, designweights, πi, are adjusted so they remain close to their
original valueswhile satisfying the constraint that theweighted sumofAi on the phase 2 sample equals its known
sum on the phase 1 cohort. The raking estimator re-weights the phase 2 estimating equation with these weights
(gi/πi), solving∑n

i�1RigiUi(β)/πi � 0 for β. This can be thought of as calibrating the phase 2 sample to the phase 1
sample. For estimating a regression coefficient, useful auxiliary variables will be ones that are highly correlated
with the influence functions for the target regression fit to the error-free data, since the sum of the influence
functions on the populationwill estimate the regression slope parameter (Breslow et al. 2009; Lumley, Shaw, and
Dai 2011). The influence function is not observed because the validated values of the variables are unknown for
individuals not selected for the phase 2 sample. But one can approximate these functions with A, the influence
functions from the target regressionfitwith the error-pronevariables, or estimators suchas theRCorMI estimators
described above. The closer the estimating equation is to the one based on the true data, the more efficient the
estimation should be; although inpractice,wehave seen that it is hard to domuchbetter than just using influence
functions from the regression fit with error-prone variables (Oh et al. 2019). This is the focus of future research.
Design-based estimators have several attractive features including (1) they generally make fewer assumptions
regarding the error structure than the other approaches described above, and (2) they are able to handle a wide
variety of analyses, variables, and error structures. For example, Oh et al. (2019) addressed simultaneous errors in
(X*, Y*, D*) with time-to-event data using raking, and demonstrated that it was unbiased under minimal as-
sumptions (i.e., MARwith πi>0 for all i) and wasmore robust and achieved a smallermean squared error than RC
in several settings. Generalized raking is capable of handling the CCASAnet analysis of time fromART initiation to
ADE (Oh et al. 2019).

Designs

The choice of the validation subsample can have a large impact on the bias and efficiency of estimates using
error-prone routinely collected data. Statisticians can play an important role by ensuring that the validation
sample iswell-chosen andby furthering researchon efficient designs. First, it is clear that the validation sample
should be a probabilistic sample. This is necessary to ensure that missing at random assumptions, required to
obtain unbiased estimates by the analytical methods outlined in the previous section, hold. Second, different
probabilistic sampling schemes in combination with different estimation procedures can lead to more or less
efficient estimation. Given the finite resources available to investigators, it can be very beneficial to target
records for validation that will maximize information gained. We focus on this problem in this section.

Two-phase sampling

Two-phase sampling has beenwell-studied (e.g., Breslow and Chatterjee 1999; Gilbert, Yu, and Rotnitzky 2014;
MacNamee 2005; Reilly 1996; Xu, Hui, and Grannis 2014; Zhao and Lipsitz 1992) and generally refers to
predictors and outcomes beingmeasured on all subjects (phase 1) and amore expensivemeasurement on only
a subsample (phase 2). The two-phase sampling literature is very relevant for designing validation studies of
routinely collected data. In our setting, phase 1 consists of the error-prone routinely collected data available on
all subjects and phase 2 is the audit or validation sample.

With rare dichotomous outcomes, it is well known that over-sampling the cases improves the efficiency of
odds ratios in two-phase designs (Prentice and Pyke 1979). Case-control and case-cohort designs and their
variations are popular and efficient (Prentice 1986). These designs are a form of sampling the extremes.
With time-to-event outcomes, extreme tail sampling takes the form of oversampling records with a short
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time-to-event and recordswitha long time-to-censoring (Lawless 2018). In theCCASAnet example, this suggests
one would want to validate records from patients who experienced an ADE early after ART initiation and from
patients who did not have an ADE (i.e., were censored) after extensive follow-up. With continuous outcomes,
sampling extremesof the outcomes or extremesof the residuals havebeenproposed (Lin, Zeng, andTang 2013).
In recent work, Tao, Zeng, and Lin (2019) showed that under the null that β=0, optimal sampling for likelihood-
based estimation (which could also include MI and Bayesian estimators) corresponds to finding the sampling
rule R that maximizes E[Rvar(score|R=1, Z) var(X|X*,Z)] where score denotes the score function (i.e., partial
derivative of the log-likelihood with respect to β). With continuous outcomes, this corresponds to sampling
extremes of the weighted residual, where the weight is given by SD(X|X*, Z), the standard deviation of X
conditionalonX* andZ. Inour setting,SD(X|X*,Z) ishigheramong thoseZ thataremoreerrorprone,which leads
to a sensible sampling strategy. For example, if there were no errors at a particular site (Z=siteC), then SD(X|X*,
Z=siteC)=0 and one would not gain information relevant to estimating β by performing audits at that site.

For design-based estimators (e.g., IPW and generalized raking), optimal two-phase designs follow
somewhat different rules because one is not relying on a model. For example, design-based estimation does
not work with extreme tail sampling described above because the probability of selection for some records is
zero, so inverse probability weights are undefined. Strategies for efficient design-based sampling can be
gleaned from the survey sampling literature (Sarndal, Swensson, and Wretman 2003). With given strata,
Neyman-allocation, i.e., sampling proportional to the product of the stratum size and standard deviation, is
optimal (Neyman 1934). For design-based estimation, to improve efficiency it would be desirable to form strata
using the influence function for the parameter of interest given the correct data; again, the true influence
function is not known, but a good choice for strata would be to use the expectation of the influence function
given phase 1 data. Efficiency can improve by choosing strata such that based on Neyman-allocation, an equal
number of records will be selected from each stratum (Waterhouse 1983); in general, higher numbers of strata
also improve efficiency (Lumley 2011). We have seen that sampling based on these principles can lead to more
efficient designs (Amorim et al. 2020).

Optimal validation sampling can be more challenging with routinely collected data. The event of interest
may contain errors, so therefore case-control sampling on the phase 1 data, for instance, may not be optimal
given that it is not known who is a true case. It can still be advantageous to choose samples based on strata of
the unvalidated, error-prone data. In an example considered by Oh et al. (2019), which considered time to first
ADE, more than half the error prone events were incorrect classifications; however, in this case the sensitivity
was very high and so case-control sampling based on D* resulted in nearly all the true cases being selected for
the validation subset – a design that turned out to be highly efficient. Wang et al. (2017) considered a genotype
stratified validation sample for linked EHR-genotype data with a misclassified EHR-derived binary outcome
and proposed a maximum likelihood estimator for testing the genetic association that incorporates both the
phase 1 and phase 2 data. Their proposed estimator was seen to have more efficiency than case-control
sampling on the error prone case status.

In classical two-phase designs, observed variables in the phase 1 sample are typically assumed to be
predictive of the expensive covariate, but they are rarely assumed to be surrogates for the true covariate. With
errors in variables, the correlation between the true covariate and the observed covariate is often quite high
and this information can be exploited to improve efficiency. Because the regression parameter for a target
variable is asymptotically equivalent to the mean of the efficient influence functions (Lumley, Shaw, and Dai
2011), this influence function, IF(X,Y), is the optimal stratifying variablewith design-based regression analyses
but is unknown because it is a function of the true variables.WhenX* andY* are good proxies forX andY, IF(X*,
Y*) can be an excellent stratification variable (Amorim et al. 2020).

Multi-wave sampling

Multi-wave sampling may be particularly beneficial for research with error-prone routinely collected data.
Multi-wave validation designs can be thought of as having at least three sampling phases: obtain error-prone
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data on all subjects (phase 1); audit an initial subset of records (phase 2, wave 1); then target additional audits
based on results of the initial audit to improve efficiency (phase 2, wave 2). In practice, an initial audit (phase 2,
wave 1) is often a quality-control check to uncover potential data problems. This first audit could then prompt a
second whose purpose is no longer only to check data quality but to improve precision of estimates correcting
for errors. Based on first audit results, a second auditmay oversample recordswithmore influence on the error-
corrected estimators. For example, in a multi-site study, investigators may want to focus their audit resources
on sites with particularly error-prone data. Importantly, optimal strategies for two-phase sampling depend on
and are sensitive to unknown parameter values (MacNamee 2005; Xu, Hui, and Grannis 2014). For example,
optimal designs for model-based estimation when β= 0 require knowledge of SD(X|X*, Z) which is unknown
without a pilot sample (Tao, Zeng, and Lin 2019). Multi-wave audit designs can better estimate these pa-
rameters, and therefore maximize resources.

Adaptive sampling designs using pilot data to modify sampling have been advocated in other settings
(Breslow and Chatterjee 1999; Fedorov, Wu, and Zhang 2012; Lohr 1990; McIsaac and Cook 2015; Wittes and
Brittain 1990). For the setting of an error prone X*, Reilly and Pepe (1995) proposed an efficient validation
design for the mean score estimator that relies on pilot data. McIsaac and Cook (2015) further developed this
idea by developing an adaptive phase 2 sampling design where the validation sample is divided into an initial
pilot sample, from which nuisance parameters necessary for optimal mean score sampling are estimated, and
then sampling of the remaining validation sample is adapted to achieve the estimated optimal proportions.
Han et al. (2019) extended this work to the setting of discrete Cox proportional hazards models and studied its
usefulness for validation designs considering continuous time to event outcomes. ‘Three-stage’ sampling has
been investigated in the context of measurement error in both outcomes and predictors for linear models
(Holcroft, Rotnitzky, and Robins 1997); however, stages 2 and 3 referred to measurements of the true outcome
(stage 2) and true predictors (stage 3). In our setting, validation of outcomes and predictors generally occurs
during the same sampling wave.

Conclusions and future research priorities

Electronic health record data and other routinely collected data are increasingly used for HIV research. These
data are prone to errors; biostatisticians are in a unique position to impact science using these types of data.
First, we should be strong advocates for the validation of data. Second, we can help investigators design
efficient validation samples. Third, we can perform analyses that correctly incorporate the validation design
and efficiently combine validated and unvalidated data.

There are also many opportunities for statistical methods development in this area. First, with regards to
estimation it would be useful to extend existing measurement error methods to handle more complex error
structures seen in practice.Wehave provided some guidance onwhich types ofmethodswe believe aremore or
less amenable to the complexities of electronic health records data, but many extensions are possible. With
that said, for these types of methods to have an impact on HIV/AIDS and more general biomedical research,
there must be a focus on practicalities. Simple methods with some bias or inefficiency may be better than
complex methods. User-friendly software implementations are also critical.

Second, research into more efficient designs for selecting validation samples is needed. Although we
outlined some preliminary work, there are many open areas of research. Most existing designs ignore the fact
that there may be correlated errors across multiple variables. Optimal sampling designs for likelihood-based
estimation procedures have not been formally derived except in special cases, and deserve further investi-
gation. Preliminary work has focused on efficient estimation of a single regression coefficient. In some cases, a
prediction model may be the ultimate goal; efficient designs for prediction would presumably require
simultaneous efficient estimation of regression coefficients for all predictor variables. In practice, in a research
network like CCASAnet, there are oftenmany high priority studies/outcomes, but insufficient funds to perform
a validation study for each of them; pragmatic validation strategies to efficiently address many research
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questions warrant additional study. In addition, different outcomes may require different validation designs.
For example, validation of ADE through chart review is quite different from validation of mortality by contact
tracing patients who are lost to follow-up. Also, we believe multi-wave validation strategies hold great
promise. However,many questions remain that are specific tomulti-wave sampling. For example,what should
be the size of the initial audit?

Finally, a critical area of future research is to prospectively apply these designs and methods to address
important HIV/AIDS questions. Ultimate uptake of these methods by biomedical researchers will be based on
visibly successful implementation of these approaches in practical settings. We encourage statisticians
engaged in research using routinely collected biomedical data to implement these designs and methods.
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