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Abstract

The availability of data from electronic health records facilitates the development and evaluation 

of risk-prediction models, but estimation of prediction accuracy could be limited by outcome 

misclassification, which can arise if events are not captured. We evaluate the robustness of 

prediction accuracy summaries, obtained from receiver operating characteristic curves and risk-

reclassification methods, if events are not captured (i.e., “false negatives”). We derive estimators 

for sensitivity and specificity if misclassification is independent of marker values. In simulation 

studies, we quantify the potential for bias in prediction accuracy summaries if misclassification 

depends on marker values. We compare the accuracy of alternative prognostic models for 30-day 

all-cause hospital readmission among 4548 patients discharged from the University of 

Pennsylvania Health System with a primary diagnosis of heart failure. Simulation studies indicate 

that if misclassification depends on marker values, then the estimated accuracy improvement is 

also biased, but the direction of the bias depends on the direction of the association between 

markers and the probability of misclassification. In our application, 29% of the 1143 readmitted 

patients were readmitted to a hospital elsewhere in Pennsylvania, which reduced prediction 
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accuracy. Outcome misclassification can result in erroneous conclusions regarding the accuracy of 

risk-prediction models.
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1. Introduction

Accurate risk prediction is one of the most important determinants of delivering high-quality 

care to patients, improving the public’s health and reducing health care costs. For example, 

unplanned hospital readmissions among patients with chronic diseases such as heart failure 

represent a substantial public health burden and cost [Bueno et al. (2010), Dunlay et al. 

(2011), Liao, Allen and Whellan (2008), O’Connell (2000)]. To reduce these costs, the 

Patient Protection and Affordable Care Act established public-reporting guidelines and 

instituted financial penalties for hospitals with high rates of short-term hospital readmission. 

Therefore, there is particular interest in developing and evaluating models that predict 

hospital readmission. Accurate risk-prediction models can be used to stratify patients at the 

point of care and to inform personalized treatment strategies [Chen et al. (2013)]. Prognostic 

models have been developed to predict the occurrence of a single readmission 30 days after 

hospital discharge [Amarasingham et al.(2010), Chin and Goldman (1997), Felker et al. 

(2004), Krumholz et al. (2000), Philbin and DiSalvo (1999), Yamokoski et al. (2007)], for 

which evaluation of prediction accuracy has been based on receiver operating characteristic 

(ROC) curves and risk-reclassification methods [Cook and Ridker (2009), Hanley and 

McNeil (1982), Pencina et al. (2008)].

As interest in individualized prediction has grown, so too has the availability of large-scale 

clinical information systems [Lauer (2012)]. A primary goal of the Health Information 

Technology for Economic and Clinical Health Act is to advance the use of health 

information technology by providing financial incentives to physicians and hospitals that 

adopt and demonstrate “meaningful use” of health information technology, particularly 

electronic health record (EHR) systems. Integrated EHR systems, for which technology 

capacity is rapidly progressing, provide unprecedented opportunities for medical discovery 

[Weiskopf and Weng (2013)]. Specifically, EHR systems capture detailed information 

regarding clinical events and potential risk factors for large and diverse patient populations, 

and therefore represent a unique resource for the development and evaluation of prediction 

models.

Analyses based on EHR data should consider the potential for outcome misclassification, 

which can arise if an EHR system fails to capture clinical events [Burnum (1989), van der 

Lei (1991)]. For example, misclassification can arise if only severe illnesses are brought to 

medical attention. In our motivating example, we focus on 30-day hospital readmission. If a 

patient is readmitted to a hospital outside the catchment area of the discharging hospital’s 

EHR system, then the patient is incorrectly classified. Previous literature has focused on the 

impact of outcome misclassification on estimation of exposure-outcome associations. It is 
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well known that outcome misclassification results in biased association estimates [Barron 

(1977), Magder and Hughes (1997), Neuhaus (1999), Rosner, Spiegelman and Willett 

(1990)]. However, previous literature has not considered the impact of outcome 

misclassification on estimation of prediction accuracy. In particular, if outcomes are 

misclassified, then prediction accuracy summaries, as obtained from ROC curves and risk-

reclassification methods, could be biased.

In this paper, we focus on the impact of outcome misclassification on estimation of 

prediction accuracy using ROC curves and risk-reclassification methods. Our goal is to 

evaluate the robustness of prediction accuracy summaries in situations in which events are 

not captured by an EHR system (i.e., “false negatives”). We derive estimators for sensitivity 

and specificity if events are incorrectly classified as nonevents and misclassification is 

independent of marker values. In simulation studies, we quantify the potential for bias in 

prediction accuracy summaries if misclassification depends on marker values. We present 

the results of a data application focused on 30-day all-cause hospital readmission, with 

readmissions to the University of Pennsylvania Health System (UPHS) captured by the 

UPHS EHR and readmissions to any hospital outside the UPHS network obtained from 

secondary data sources. Note that we do not consider “false positives” because we assume 

that if a hospital admission was captured by the EHR system, then that admission was a true 

event.

2. Methods for quantifying prediction accuracy

2.1. ROC curves

Statistical methods for prediction, or classification, are based on the fundamental concepts of 

sensitivity and specificity of a binary classifier for a binary disease outcome. For a marker 

defined on a continuous scale, an ROC curve is a standard method to summarize prediction 

accuracy. The ROC curve is a graphical plot of the sensitivity versus 1 − specificity across 

all possible dichotomizations m of a continuous marker M [Hanley and McNeil (1982)]:

(2.1)

(2.2)

for which D = {1, 0} indicates a “case” or “control,” respectively. The marker’s prediction 

accuracy is quantified by the area under the ROC curve (AUC), which measures the 

probability that the marker will rank a randomly chosen diseased individual higher than a 

randomly chosen nondiseased individual. The difference in AUC, denoted by ΔAUC, can be 

used to contrast the prediction accuracy of different markers. Recent advances have extended 

ROC methods to time-dependent binary disease outcomes (or survival outcomes), which 

could be subject to censoring, as well as to survival outcomes that could be subject to 

informative censoring from competing risk events [Heagerty, Lumley and Pepe (2000), 

Heagerty and Zheng (2005), Saha and Heagerty (2010), Wolbers et al. (2009)].
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2.2. Risk reclassification

Methods based on risk reclassification have been proposed to offer an alternative approach 

to contrast risk-prediction models. Risk-reclassification methods are often used to compare 

“nested” models: models with and without a marker or markers of interest [Cook and Ridker 

(2009), Pencina et al. (2008)]. Reclassification statistics quantify the degree to which an 

“alternative” model [i.e., a model with the marker(s) of interest] more accurately classifies 

“cases” as higher risk and “controls” as lower risk relative to a “null” model [i.e., a model 

without the marker(s) of interest]. Reclassification metrics include the integrated 

discrimination improvement (IDI). The IDI examines the difference in mean predicted risk 

among “cases” and “controls” between an “alternative” model  and a “null” model 

[Pencina et al. (2008)]:

(2.3)

for which sensitivity and specificity are defined in equations (2.1) and (2.2), respectively; 

r(m; ) and r(m; ) denote the risk under the “null” and “alternative” models, respectively. 

The estimated IDI is obtained by averaging the estimated risk  under the “null” and 

“alternative” models for “cases” and “controls” [Pencina et al. (2008)]:

(2.4)

Risk-reclassification methods are available for censored survival outcomes [Liu, Kapadia 

and Etzel (2010), Pencina, D’Agostino and Steyerberg (2011), Steyerberg and Pencina 

(2010), Viallon et al. (2009)], as well as for survival outcomes in the presence of competing 

risk events [Uno et al. (2013)].

2.3. Outcome misclassification

Prediction accuracy summaries obtained from ROC curves and risk-reclassification methods 

could be affected by outcome misclassification. A particular type of misclassification can 

arise in EHR data, in which “cases” are incorrectly classified as “controls” if an EHR system 

fails to capture events that occur outside the heath system’s catchment area. The 

misclassification of events as nonevents could be independent of or dependent on values of 

the marker. For example, in the context of hospital readmission, patients who have more 

flexible insurance coverage could be more likely to be readmitted to a hospital other than the 

one from which they were discharged. In this section, we derive expressions for sensitivity 

and specificity if events are incorrectly classified as nonevents.

Let D denote the true outcome with population prevalence π = P[D = 1], 0 ≤ π ≤ 1, and D⋆ 

denote the outcome measured with error. Note that because we assume that only events can 
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be misclassified as nonevents, . The misclassification rate 

is denoted by p = P[D⋆ = 0 | D = 1].

Given the observed data, the sensitivity of the marker M for the misclassified outcome D⋆ is

(2.5)

and the specificity of the marker M for the misclassified outcome D⋆ is Spec⋆(m)

(2.6)

for which

because P[D⋆ = 0 | D = 0]= 1.

If misclassification is independent of M (e.g., P[D⋆ = 1 | M > m, D = 1]= P[D⋆ = 1 | D = 1]), 

then equations (2.5) and (2.6) reduce to

(2.7)

(2.8)

respectively. First, the sensitivity based on the misclassified outcomes is equal to the true 

sensitivity. Second, note that a meaningful ROC curve is above the diagonal (i.e., 1 − 

specificity is always less than sensitivity). The specificity based on the misclassified 

outcomes is therefore an attenuated version of the true specificity. The degree of rightward 

horizontal shift in the corresponding ROC curve depends on the prevalence, the 

misclassification rate and the difference between the true sensitivity and 1 − specificity. 

Therefore, if the misclassification of events is independent of marker values, the ROC curve 

for M based on the misclassified outcomes is closer to the diagonal than the true ROC curve, 

which results in a reduced AUC.
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For illustration, consider the use of a binary classifier C to classify individuals with respect 

to a binary outcome D with a prevalence of 0.5 for 200 individuals (Table 1). Based on the 

true outcomes, provided in Table 1(a), the sensitivity and specificity are both 0.8 (80/100). 

Suppose that not all of the events are captured. Thus, suppose that 20% of individuals who 

experience the event, denoted by D = 1 in Table 1(a), are incorrectly classified as a “control” 

in Table 1(b). Based on the misclassified outcomes, provided in Table 1(b), the sensitivity 

and specificity are 0.8 (64/80) and 0.7 (84/120), respectively. Therefore, if outcome 

misclassification occurs only among the “cases,” then specificity is reduced, but sensitivity 

is unaffected. Now suppose that C was obtained as a cut-point to a continuous marker, for 

which prediction accuracy could be quantified by the AUC. Reducing specificity while 

fixing sensitivity would result in a shifted-to-the-right ROC curve with a reduced AUC and 

an attenuated estimate of prediction accuracy.

Given a known or assumed value for the prevalence π and the misclassification rate p, the 

sensitivity and specificity based on the misclassified outcomes can be used to obtain the 

bias-corrected sensitivity and specificity:

(2.9)

2.10

The bias-corrected sensitivity and specificity at each dichotomization m can then be used to 

obtain bias-corrected estimates of the ΔAUC and IDI, with the required integration 

performed using the trapezoidal rule. In practice, the true values for the prevalence and the 

misclassification rate are unknown. However, a priori knowledge could be used to guide 

sensitivity analyses. We illustrate such sensitivity analyses in our application.

If misclassification depends on the value of M, then the sensitivity and specificity depend on 

the magnitude and direction of the association between misclassification and the marker; see 

equations (2.5) and (2.6). In the following section, we use simulated data to determine how 

the association between a marker and the probability of misclassification affects prediction 

accuracy summaries.

3. Simulation study

We conducted simulation studies to evaluate the impact of outcome misclassification on 

estimation of prediction accuracy using the ΔAUC and IDI. We only misclassified events to 

emulate situations in which events are not observed. Simulations were performed under two 

scenarios: (1) misclassification was independent of marker values; and (2) misclassification 

was dependent on marker values. The focus of our analysis was the improvement in 

prediction accuracy associated with a new marker of interest.

3.1. Parameters

For both scenarios, we generated an “old” marker X and a “new” marker Z from a bivariate 

Normal distribution:
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We generated a binary variable D to indicate an event for a population of 10,000 individuals 

from a logistic regression model:

in which the intercept was selected for a prevalence π = {0.2, 0.3, 0.5}, with a value of 0.3 

consistent with hospital readmission rates.

To obtain the true ΔAUC and IDI associated with adding Z to a model with X alone, we fit a 

logistic regression model of D against X (i.e., the “null” model) and against X + Z (i.e., the 

“alternative” model). We specified the “null” model as

and the “alternative” model as

For prevalences of {0.2, 0.3, 0.5}, the true ΔAUC was {0.103, 0.110, 0.112} and the true IDI 

was {0.187, 0.204, 0.206}, respectively. By generating risk scores for the true outcomes, our 

simulations focused on the impact of outcome misclassification on estimation of prediction 

accuracy, and not on development of risk-prediction models. We then misclassified 

outcomes according to two scenarios.

3.2. Marker-independent misclassification

In scenario 1, misclassification was independent of the values of X and Z. We randomly 

misclassified events according to rates p = {0.05, 0.1, 0.2, 0.4}; no nonevents were 

misclassified. At each of 1000 iterations, we randomly selected n = 500 individuals and 

estimated the ΔAUC and IDI associated with adding Z to a model with X alone. We 

calculated the percent bias in the estimates obtained using the misclassified outcomes to 

those obtained using the true outcomes. Negative percent bias indicated bias toward the null.

Results—Table 2 provides the mean bias in the ΔAUC and IDI for prevalences of {0.2, 0.3, 

0.5} and misclassification rates of {0.05, 0.1, 0.2, 0.4}; Supplementary Figure 1 displays 

additional summaries [Wang et al. (2016)]. As expected, marker-independent outcome 

misclassification resulted in attenuated prediction accuracy summaries, such that the 

estimated ΔAUC and IDI were biased toward the null. The magnitude of the estimated bias 

in the ΔAUC and IDI increased as the misclassification rate increased from 0.05 to 0.4. In 

addition, the magnitude of the estimated bias in the ΔAUC and IDI increased as the 
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prevalence increased from 0.2 to 0.5. There were no substantial differences in the mean bias 

between the ΔAUC and IDI; however, ΔAUC estimates were more variable than IDI 

estimates (Supplementary Figure 1) [Wang et al. (2016)].

3.3. Marker-dependent misclassification

In scenario 2, the prevalence was fixed at 0.3. We used X and Z individually and in 

combination to induce misclassification for events according to a logistic regression model. 

Let Y be an indicator of whether an outcome was misclassified. We specified the probability 

of misclassification as

(3.1)

with values of γ0 selected for misclassification rates of {0.05, 0.1, 0.2, 0.4}. We considered 

situations in which outcome misclassification depended on values of the “old” marker X, the 

“new” marker Z and a combination of the two. First, X and Z were positively associated 

with misclassification, with (γ1, γ2) = {(0.5, 0), (0, 0.5), (0.5, 0.5)}. In these situations, high-

risk individuals (as quantified by X and Z) were more likely to be misclassified. Second, X 
and Z were negatively associated with misclassification, with (γ1, γ2) = {(−0.5, 0), (0, −0.5), 

(−0.5, −0.5)}. In these situations, low-risk individuals were more likely to be misclassified. 

Third, the direction of the association of X and Z with misclassification differed, with (γ1, 

γ2) = {(0.5, −0.5), (−0.5, 0.5)}. Note that (γ1, γ2) = (0, 0) corresponded to marker-

independent misclassification. As above, we randomly selected n = 500 individuals and 

estimated the ΔAUC and IDI associated with adding Z to a model with X alone. We 

calculated the percent bias in the estimates obtained using the misclassified outcomes to 

those obtained using the true outcomes. Negative percent bias indicated bias toward the null.

Results—Table 3 provides the mean bias in the ΔAUC and IDI for values of (γ1, γ2) and 

misclassification rates of {0.05, 0.1, 0.2, 0.4}; Supplementary Figures 2–5 display additional 

summaries [Wang et al. (2016)]. As in scenario 1, the magnitude of the estimated bias 

increased as the misclassification rate increased. If only the “old” marker X was positively 

associated with misclassification, that is, (γ1, γ2) = (0.5, 0), then the estimated ΔAUC was 

biased toward the alternative, whereas the IDI was biased toward the null. In this situation, 

the AUC of the “null” model was underestimated, such that the ΔAUC between the “null” 

and “alternative” models was overestimated. If only the “old” marker X was negatively 

associated with misclassification, that is, (γ1, γ2) = (−0.5, 0), then both the estimated ΔAUC 

and IDI were biased toward the null, with greater bias for the ΔAUC.

If the “new” marker Z was positively associated with misclassification, that is, (γ1, γ2) = {(0, 

0.5), (0.5, 0.5), (−0.5, 0.5)}, then the estimated ΔAUC and IDI were biased toward the null; 

the ΔAUC was substantially biased if γ1 ≠ 0. In this situation, high-risk individuals (due to 

higher values of Z) were more likely to be misclassified, leading to a smaller disparity in the 

levels of Z between events and nonevents. Therefore, the estimated improvement in 

prediction accuracy associated with adding Z to X was attenuated. If the “new” marker Z 
was negatively associated with misclassification, that is, (γ1, γ2) = {(0, −0.5), (0.5, −0.5)}, 
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then the estimated ΔAUC and IDI were biased toward the alternative. In this situation, low-

risk individuals (due to lower values of Z) were more likely to be misclassified, leading to a 

larger disparity in the levels of Z between events and non-events. Therefore, the estimated 

improvement in prediction accuracy associated with adding Z to X was accentuated.

3.4. Summary

We focused on the impact of outcome misclassification on methods for evaluating 

improvements in prediction accuracy. If misclassification was independent of marker values, 

then the estimated accuracy improvement was biased toward the null. If misclassification 

depended on marker values, then the estimated accuracy improvement was also biased, but 

the direction of the bias depended on the direction of the associations between the “new” 

and/or “old” markers and the probability of misclassification. In particular, if the “new” 

marker was negatively associated with the probability of misclassification, then the 

estimated accuracy improvement was biased toward the alternative.

4. Application

4.1. Background

Current prognostic models for readmission among heart failure patients are based on 

demographic characteristics, comorbid conditions, physical assessments and laboratory 

values [Amarasingham et al. (2010), Chin and Goldman (1997), Felker et al. (2004), 

Krumholz et al. (2000), Philbin and DiSalvo (1999), Yamokoski et al. (2007)]. These models 

have been developed using data sourced from claims databases or collected during small 

randomized controlled trials. The goal of our illustrative analysis was to compare alternative 

prognostic models for all-cause readmission using data collected from the UPHS EHR 

system. Our analysis focused on the number of admissions in the previous year as the 

marker of interest [Baillie et al. (2013)]. Our analysis could be affected by outcome 

misclassification because readmissions to a hospital outside the UPHS network would not be 

captured by the UPHS EHR system. Readmissions to a hospital elsewhere in Pennsylvania 

were obtained from the Pennsylvania Health Care Containment Council (PHC4). As 

required by law, all hospitals in the Commonwealth of Pennsylvania must provide a 

discharge abstract for all patients to PHC4. In our analysis, the outcomes obtained from the 

UPHS EHR system represented the possibly misclassified outcomes, whereas the outcomes 

obtained from PHC4 represented the true outcomes.

4.2. Methods

We obtained data on 4548 Pennsylvania residents, 18 years of age or older, admitted with a 

primary diagnosis of heart failure to a UPHS hospital between 2005 and 2012. We limited 

our analysis to patients who were alive at discharge. We excluded patients who were 

discharged to hospice care. The outcome of interest was hospital readmission for any cause 

within 30 days of discharge. We formed a “null” model based on sociodemographic 

characteristics (age, sex, race, insurance provider) and comorbid conditions diagnosed at 

discharge (diabetes mellitus, chronic obstructive pulmonary disease, coronary artery disease, 

hypercholesterolemia and hypertension). In the “alternative” model, we additionally 

included the number of admissions in the previous year as a continuous variable. Logistic 
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regression models were used to derive multi-marker risk scores for 30- day readmission 

under the “null” and “alternative” models [French et al. (2012)]. A leave-one-out jackknife 

approach was used to derive the scores [Efron and Tibshirani (1993)]. In this approach, the 

value of the score for each individual was calculated as a weighted combination of his/her 

marker values. The weights were determined by regression coefficients, which were 

estimated from a model fit for the data for all other individuals.

The ΔAUC and IDI were used to quantify the improvement in prediction accuracy associated 

with adding the number of admissions in the previous year to a model that included 

sociodemographic characteristics and comorbid conditions diagnosed at discharge. 

Confidence intervals and P values were obtained from 200 bootstrap resamples [Efron and 

Tibshirani (1993)]. We developed the models using the true outcomes obtained from PHC4, 

but evaluated the models using both the possibly misclassified outcomes obtained from the 

UPHS EHR system and the true outcomes obtained from PHC4.

We performed a sensitivity analysis based on the following: the sensitivities and specificities 

for the “null” and “alternative” models estimated from the possibly misclassified outcomes; 

and assumed values for the true 30-day readmission rate π = {0.2, 0.25, 0.3} and 

misclassification rate p = {0.2, 0.3, 0.4}. First, the estimated sensitivities and specificities, 

along with the assumed readmission and misclassification rates, were used to calculate bias-

corrected sensitivities and specificities according to equations (2.9) and (2.10), respectively. 

Next, the bias-corrected ΔAUC and IDI were estimated based on the bias-corrected 

sensitivities and specificities, with integration performed using the trapezoidal rule. In this 

sensitivity analysis, we assumed that misclassification was independent of marker values.

4.3. Results

Table 4 provides summary statistics of patient characteristics at discharge, stratified by 

whether the patient was not readmitted within 30 days, readmitted to UPHS or readmitted to 

a hospital elsewhere in Pennsylvania. Of the 1143 readmitted patients, 333 were readmitted 

to a hospital elsewhere in Pennsylvania—a misclassification rate of 0.29. Compared to 

patients who were readmitted to UPHS, patients readmitted to a hospital elsewhere in 

Pennsylvania were younger, more likely to be insured through Medicaid and had a greater 

number of admissions in the previous year. These results indicated that outcome 

misclassification depended on both the “null” and “alternative” markers.

The “null” model was estimated based on sociodemographic characteristics and comorbid 

conditions diagnosed at discharge:
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The “alternative” model additionally included the number of admissions in the previous year 

as a continuous variable:

Figure 1 presents ROC curves for 30-day readmission for the “null” and “alternative” 

models using the true (“readmitted”) and possibly misclassified (“readmitted to UPHS”) 

outcomes. Outcome misclassification resulted in an underestimate of ΔAUC and IDI (Table 

5). Misclassification reduced the AUC of the “alternative” model from 0.647 to 0.603 (a 

difference of 0.044) and that of the “null” model from 0.559 to 0.537 (a difference of 0.022). 

Therefore, the attenuation of the estimated ΔAUC was mainly driven by attenuation in the 

AUC for the “alternative” model. Recall that the estimated IDI is obtained by averaging the 

estimated risk under the “null” and “alternative” models for “cases” and “controls”:

The estimated IDIs in Table 5 were calculated as follows:

The attenuation in the estimated IDI was mainly driven by a decrease in the average 

estimated risk under the “alternative” model among “cases” (0.303 versus 0.288) and an 

increase in the average estimated risk under the “alternative” model among “controls” (0.234 

versus 0.243).

Table 6 provides the bias-corrected ΔAUC and IDI under several assumed values for the rate 

of 30-day hospital readmission and misclassification rate among events. Note that based on 

the true outcomes, the 30-day readmission rate was 0.25 and the misclassification rate was 

0.29. Although the bias-corrected ΔAUC and IDI were closer to their true values (0.088 and 

0.059, respectively), the bias was not completely ameliorated. The residual bias is likely due 

to the fact that misclassification depended on both the “null” and “alternative” markers 

(Table 4). In the following section, we discuss methods that can be used to correct for 

marker-dependent outcome misclassification.

4.4. Summary

Our analysis focused on whether the number of admissions in the previous year improved 

prognostic performance for 30-day readmission compared to sociodemographic 

characteristics and comorbid conditions diagnosed at discharge. Using data obtained from 

the UPHS EHR system, ROC curves and risk-reclassification methods indicated a small but 
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statistically significant improvement in prediction accuracy. However, the improvement in 

accuracy was greater if the true outcomes were used. Outcome misclassification resulted in a 

25% and 34% attenuation in the ΔAUC and IDI, respectively.

5. Discussion

In this paper we focused on the impact of outcome misclassification on estimation of 

prediction accuracy using ROC curves and risk-reclassification methods. We focused on 

misclassification in which events were incorrectly classified as nonevents (i.e., “false 

negatives”). We derived estimators to correct for bias in sensitivity and specificity if 

misclassification was independent of marker values. In simulation studies, we quantified the 

bias in prediction accuracy summaries if misclassification depended on marker values. In 

this case, we found that the direction of the bias was determined by the direction of the 

association of the “new” and/or “old” markers with the probability of misclassification. In 

our application, we showed that misclassification can affect estimation of prediction 

accuracy in practice. Our research adds to the growing body of literature that compares and 

contrasts the statistical properties of ROC curves and risk-reclassification methods [Cook 

and Paynter (2011), Demler, Pencina and D’Agostino (2012), French et al. (2012), Hilden 

and Gerds (2014), Kerr et al. (2011, 2014), Pepe (2011)].

Statistical methods are available to correct for misclassification of binary outcomes. In 

particular, validation data provide the gold-standard measurement of outcomes and risk 

factors of interest, and can be used to assess the frequency and structure of the classification 

error [Edwards et al. (2013), Lyles et al. (2011)]. Validation data can also be used to inform 

statistical models that provide unbiased regression coefficients from the error-prone data 

[Edwards et al. (2013), Lyles et al. (2011), Magder and Hughes (1997), Neuhaus (1999), 

Rosner, Spiegelman and Willett (1990)]. Likelihood-based methods are available to obtain 

unbiased estimates of the odds ratio in the presence of outcome misclassification and 

marker-dependent misclassification [Lyles et al. (2011), Magder and Hughes (1997), 

Neuhaus (1999), Rosner, Spiegelman and Willett (1990)]. Imputation methods are available 

that use validation data to reduce bias caused by misclassification [Edwards et al. (2013)]. 

Semi-parametric and nonparametric methods have also been considered [Pepe (1992), Reilly 

and Pepe (1995)]. However, errors in outcomes and risk factors could be correlated due to 

their shared dependence on patient characteristics. Research has focused on correcting for 

correlated errors in covariates and continuous outcomes [Shepherd, Shaw and Dodd (2012), 

Shepherd and Yu (2011)]. Further research is needed to correct for correlated errors in 

covariates and binary outcomes.

We focused on the potential for outcomes to be misclassified in EHR data. In practice, 

eligibility criteria and potential risk factors can also be measured with error. For example, 

eligibility is typically based on codes that might not identify all events and do not account 

for the severity of events that are identified. In our application, the marker of interest was the 

number of admissions in the previous year, which could also be subject to measurement 

error. We used PHC4 data to count number of previous admissions, but UPHS data may 

undercount number of previous admissions for patients who were admitted to hospitals 

outside UPHS. Future research could focus on the impact of exposure misclassification on 
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estimation of prediction accuracy. The use of EHR data in clinical research is rapidly 

increasing and will likely present additional analysis challenges in the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
ROC curves for 30-day all-cause readmission among Pennsylvania residents discharged 

from UPHS with a primary diagnosis of heart failure, 2005–2012, using the true 
(“readmitted”) and possibly misclassified (“readmitted to UPHS”) outcomes. The “null” 

model was based on sociodemographic characteristics and comorbid conditions diagnosed at 

discharge; the “alternative” model additionally included the number of admissions in the 

previous year.
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Table 1

Hypothetical data to illustrate the impact of outcome misclassification on sensitivity and specificity

(a) True outcomes (b) Misclassified outcomes

D = 1 D = 0 Total Case Control Total

C = 1 80 20 100 64 36 100

C = 0 20 80 100 16 84 100

Total 100 100 200 80 120 200
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Table 2

Mean bias (%) in the ΔAUC and IDI under marker-independent outcome misclassification

Misclassification rate among events

0.05 0.1 0.2 0.4

π a ΔAUC IDI ΔAUC IDI ΔAUC IDI ΔAUC IDI

0.2 −0.8 −1.4 −3.9 −2.6 −5.3 −5.4 −10.5 −9.3

0.3 −1.9 −1.8 −6.3 −4.6 −9.5 −8.3 −17.4 −17.1

0.5 −6.2 −5.6 −10.4 −8.8 −19.3 −16.4 −25.7 −26.8

a
π denotes the prevalence.
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Table 3

Mean bias (%) in the ΔAUC and IDI under marker-dependent outcome misclassification (π = 0.3)

Misclassification rate among events

0.05 0.1 0.2 0.4

γ 1 
a

γ 2 
a ΔAUC IDI ΔAUC IDI ΔAUC IDI ΔAUC IDI

−0.5 −0.5 −1.1 0.4 −3.4 −0.1 −5.2 0.2 −6.8 4.2

−0.5 0 −5.6 −2.4 −11.7 −5.9 −21.0 −10.4 −37.6 −17.6

−0.5 0.5 −9.1 −4.9 −20.6 −12.5 −31.6 −19.7 −66.1 −39.0

0 −0.5 1.7 0.8 2.3 1.1 5.9 1.9 16.0 7.6

0 0 −1.9 −1.8 −6.3 −4.6 −9.5 −8.3 −17.4 −17.1

0 0.5 −4.7 −4.1 −12.5 −11.4 −19.7 −18.0 −39.5 −34.1

0.5 −0.5 5.1 1.7 6.5 1.6 15.9 3.9 30.3 8.3

0.5 0 1.3 −1.0 1.1 −3.5 5.2 −4.9 14.7 −5.6

0.5 0.5 −0.6 −3.0 −4.5 −9.4 −6.9 −14.7 −11.3 −27.2

a
γ1 and γ2 correspond to the associations between markers X and Z, respectively, and the log odds of misclassification among events.
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Table 4

Characteristics of Pennsylvania residents discharged from UPHS with a primary diagnosis of heart failure, 

2005–2012, stratified by whether the patient was not readmitted within 30 days, readmitted to UPHS or 

readmitted to a hospital elsewhere in Pennsylvania
a

Not readmitted Readmitted

n = 3405 To UPHS
n = 810

Elsewhere
n = 333 P 

b

Sociodemographic characteristics

 Age, years 69 (56, 80) 68 (55, 80) 65 (51, 76) 0.003

 Male, n (%) 1529 (45) 417 (51) 190 (57) 0.09

 Race, n (%) 0.73

  Black 2299 (68) 530 (65) 226 (68)

  White 1037 (30) 260 (32) 99 (30)

  Other 69 (2) 20 (2) 8 (2)

 Hispanic ethnicity, n (%) 15 (<1) 7 (1) 1 (<1) 0.45

 Insurance, n (%) 0.001

  Medicare 2281 (67) 543 (67) 195 (59)

  Medicaid 634 (19) 163 (20) 97 (29)

  Private 460 (14) 102 (13) 37 (11)

  Uninsured 30 (1) 2 (<1) 4 (1)

 Discharging hospital, n (%) 0.003

  Pennsylvania Hospital 924 (27) 237 (29) 70 (21)

  Presbyterian Medical Center 1228 (36) 287 (35) 113 (34)

  University of Pennsylvania 1253 (37) 286 (35) 150 (45)

Concurrent diagonses, n (%)

 Diabetes mellitus 1283 (38) 302 (37) 111 (33) 0.22

 COPD 839 (25) 199 (25) 95 (29) 0.18

 Coronary artery disease 1250 (37) 335 (41) 131 (39) 0.55

 Hypercholesterolemia 809 (24) 167 (21) 64 (19) 0.63

 Hypertension 2107 (62) 485 (60) 208 (62) 0.42

 Acute stroke 8 (<1) 2 (<1) 2 (1) 0.58

Admissions in previous year, # 1 (0, 2) 2 (1, 4) 3 (1, 5) <0.001

COPD, chronic obstructive pulmonary disease.

a
Summaries presented as median (25th, 75th percentile) unless otherwise indicated as n (%).

b
P values compare characteristics between patients readmitted to UPHS and patients readmitted elsewhere, obtained from Wilcoxon rank-sum tests 

for continuous variables or Fisher’s exact tests for categorical variables.
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Table 5

Estimated ΔAUC and IDI for 30-day all-cause readmission among Pennsylvania residents discharged from 

UPHS with a primary diagnosis of heart failure, 2005–2012

Readmitted Readmitted to UPHS

Estimate
a 95% CI P

Estimate
a 95% CI P

ΔAUC 0.088 0.065, 0.111 <0.001 0.066 0.042, 0.091 <0.001

IDI 0.059 0.044, 0.074 <0.001 0.039 0.025, 0.053 <0.001

CI, confidence interval.

a
Estimates quantify the improvement in prediction accuracy associated with adding the number of admissions in the previous year to a model that 

included sociodemographic characteristics and comorbid conditions diagnosed at discharge.

Ann Appl Stat. Author manuscript; available in PMC 2016 May 06.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

WANG et al. Page 22

Table 6

Bias-corrected ΔAUC and IDI under assumed values for the rate of 30-day hospital readmission and 

misclassification rate among events

Assumed misclassification rate among events

0.2 0.3 0.4

π a ΔAUC IDI ΔAUC IDI ΔAUC IDI

0.2 0.070 0.041 0.071 0.042 0.073 0.043

0.25 0.071 0.042 0.073 0.043 0.075 0.044

0.3 0.072 0.043 0.075 0.044 0.078 0.046

a
π denotes the assumed 30-day hospital readmission rate.
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