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Summary. Uncertainty concerning the measurement error properties of self-reported diet has important implications for the
reliability of nutritional epidemiology reports. Biomarkers based on the urinary recovery of expended nutrients can provide an
objective measure of short-term nutrient consumption for certain nutrients and, when applied to a subset of a study cohort,
can be used to calibrate corresponding self-report nutrient consumption assessments. A nonstandard measurement error model
that makes provision for systematic error and subject-specific error, along with the usual independent random error, is needed
for the self-report data. Three estimation procedures for hazard ratio (Cox model) parameters are extended for application to
this more complex measurement error structure. These procedures are risk set regression calibration, conditional score, and
nonparametric corrected score. An estimator for the cumulative baseline hazard function is also provided. The performance
of each method is assessed in a simulation study. The methods are then applied to an example from the Women’s Health
Initiative Dietary Modification Trial.
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1. Introduction
International reviews of diet and chronic disease data re-
port many possible diet–disease associations, but few that are
firmly established (World Cancer Research Fund/American
Institute for Cancer Research, 2007). Studies of the same as-
sociation in different populations, or using differing dietary
assessment methods, often yield conflicting results. There are
now cohorts where diet is assessed with both food frequency
and food record data. In these contexts a positive associa-
tion between dietary fat and breast cancer (Bingham et al.,
2003, Freedman et al., 2006) and an inverse association be-
tween dietary fiber and colorectal cancer (Dahm et al., 2010)
were found when food records were used, but these associa-
tions were not apparent when food frequency questionnaire
(FFQ) data were substituted. These reports strongly suggest
that the measurement error properties of the dietary assess-
ment methods used need to be assessed and accommodated
if reliable diet and disease associations are to be obtained.

Some nutritional epidemiology observational studies have
attempted to address the measurement error issue by using
one self-report assessment to calibrate another. However, a
basic requirement for a reference estimate to be used to cal-
ibrate (or correct) another assessment is that of indepen-
dent measurement errors. Because measurement errors for
two self-report assessments may be strongly positively cor-
related, recent efforts have instead focused on biomarkers of
nutrient consumption. For example, a doubly labeled water

technique (Schoeller, 1988) provides a reliable assessment of
short-term total energy expenditure, while urinary nitrogen
yields a good biomarker of short-term protein expenditure
(Bingham and Cummings, 1985). These recovery biomarkers
(Kaaks, 1997) also provide estimates of consumption among
weight-stable persons. Available biomarker study data docu-
ment important systematic bias in relation to body mass in-
dex for energy, protein, and percentage of energy from protein
for self-reported food frequency data (Heitman and Lissner,
1995, Subar et al., 2003, Neuhouser et al., 2008).

Building on the work of several authors (Prentice, 1996;
Carroll et al., 1998, Jiang et al., 2001, Kipnis et al., 2001),
Prentice et al. (2002) proposed a general measurement error
model for self-reported dietary intake that incorporates loca-
tion and scale bias terms that may depend on observed covari-
ates. This model also allows the measurement error variance
to depend on observed subject characteristics. Sugar, Wang,
and Prentice (2007) considered this model for covariate mea-
surement error and developed methods for odds ratio estima-
tion (logistic regression model). Many potential applications,
however, involve time-to-event outcomes. Here we consider
hazard ratio (Cox model) estimators that accommodate this
general error structure to relate nutrient consumption to a
time-to-disease outcome.

Several methods have been proposed for Cox regres-
sion with mismeasured covariates, under a classical addi-
tive measurement model. These include regression calibration
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(Prentice, 1982, Wang et al., 1997), risk set regression cal-
ibration (RRC) (Xie, Wang, and Prentice, 2001), paramet-
ric, semiparametric and nonparametric likelihood procedures
(Hu, Tsiatis, and Davidian, 1998), conditional score (CS)
(Tsiatis and Davidian, 2001), parametric corrected score
(Nakamura, 1992), and nonparametric corrected score (NP)
procedures (Huang and Wang, 2000, 2006; Hu and Lin, 2002,
2004; Gorfine, Hsu, and Prentice, 2004; Song and Huang,
2005). There has also been consideration of more general er-
ror models (Hu and Lin, 2002, Liao et al., 2011) under the
assumption that a validation subsample is available, where
the covariate of interest is precisely measured. In our setting,
the precisely measured covariate is not obtainable.

Here our interest focuses on a study cohort with available
self-report data and a biomarker subsample. Our applica-
tions to energy and protein consumption in relation to cancer
(Prentice et al., 2009) and to cardiovascular disease incidence
(Prentice et al., 2011) indicate that these assessments can be
much improved by using such study subject characteristics as
body mass index, age, and ethnicity to augment the food fre-
quency self-report assessments. The disease occurrence rates
are low (<5%) and censoring rates are high in the context
of these studies, configurations under which bias in the re-
gression calibration estimators is expected to be negligible.
In this article, we extend RRC, CS, and NP procedures to
the measurement model of Prentice et al. (2002) that allows
for these types of dependencies. We evaluate and compare
the performance of these procedures in simulation study and
application.

2. Methods
Let Xi be the covariate of interest measured with error, a nu-
tritional intake in our setting, and Zi a vector of precisely
measured covariates, for subjects i = 1, . . . , n. The usual pro-
portional hazards model for the continuous failure time Ti≥
0 is assumed. The hazard rate λi (t) for individual i at time t
is given by λ0(t)exp(β1Xi + β′

2Zi ), where λ0(t) is an arbitrary
baseline hazard function. Assume the right-censoring time C
is independent of T given (X, Z). Let Ni (t) denote the count-
ing process for observed events, Yi (t) = I{Ui = min(Ti , Ci )≥
t} be the at-risk indicator at time t, and Δi = I(Ti ≤ Ci ). A
finite follow-up interval [0, M] is assumed.

2.1 Measurement Error Model
Instead of observing Xi , ki replicates of a self-reported Qij are
observed, where Qij follows the general measurement error
model (Prentice et al., 2002)

Qij = δ0 + δ1Xi + δ′2Zi + δ′3ZiXi + γi + ξij , (1)

for i = 1, . . . , n and j = 1, . . . , ki . Here, ξij is mean-zero ran-
dom error and γ i is a mean-zero random effect that allows
errors in repeat assessments for subject i to be correlated.
The δ parameters determine the systematic bias of the as-
sessment, including scale and location bias dependent on Zi .
A variance of the form aeb ′V i is considered for γ i to allow the
subject-specific error variance to depend on Vi , the categori-
cal components of Zi . Note, more generally that Vi could be a
categorical characteristic derived from Zi . For regression cal-
ibration, there may be continuous and discrete components

of Zi . For the conditional and corrected score methods that
follow, all components of Zi that impact the scale bias (i.e.,
have a nonzero δ3 coefficient) are assumed to be discrete. The
error ξij is assumed independent of the other random variables
on the right side of (1).

For i = 1, . . . , n, we also assume there are κi replicates of
an additional covariate Wij , for j = 1, . . . , κi , a biomarker
that obeys the classical measurement error model

Wij = Xi + εij . (2)

Importantly, the mean-zero error εij is assumed independent
of Xi and other terms on the right side of (1). Typically, due to
expense, the biomarker would only be measured on a random
subset of subjects, called the biomarker subset. Let Ri be the
indicator that subject i is in the biomarker subset.

We assume that (Ni , Yi , Xi ,Zi , Ri , γi , ki , κi , εi1, . . . , εk i
,

ξi1, . . . , ξκ i
) are independent and identically distributed ran-

dom vectors and that (Ri , ki , κi ) may depend on observed
baseline covariates Z i , but is otherwise independent of all
other random variables in the survival and error models.
With the additional assumptions that P(R = 1) > 0 and
P (V = v) > 0 for all v ∈ {v|V = v}, one has ρ1v = P (R = 1,
V = v) > 0 from the independence of R and V. With this re-
sult and the strong law of large numbers, we have the nec-
essary regularity that n1v /n → ρ1v as n → ∞ for all v, where
n1v is the number of individuals with R = 1 and V = v. If
P(R = 1) < 1, similar regularity holds for the nonbiomarker
subset (R = 0).

For ease of notation, X and Z are specialized to be univari-
ate, with Z being categorical, and we assume all n individuals
have k replicates of Q and all individuals in the biomarker sub-
set have κ observations of W. The error model nuisance pa-
rameters are estimated separately using method of moments
(Sugar et al., 2007). To ensure identifiability of all parame-
ters in the measurement error model, it is enough that only a
random subset of the biomarker cohort has κ > 1 replicates
of W and a random subset of the main cohort has k > 1 repli-
cates of Q. Importantly, for regression calibration, only single
measures of Q and W are needed. The variance of γ in (1) is
assumed to follow the model Σγ = aebZ .

2.2 Risk Set Regression Calibration
In this section, we extend the RRC estimator of Xie et al.
(2001) to the generalized measurement error model
(Section 2.1). For this model, the unobserved Xi are estimated
separately depending on membership in the biomarker subset.

For an observed failure time t, define

X̂i (t) =

{
Ê{Xi |Yi (t) = 1, Wi ·, Qi ·, Zi} if Ri = 1,

Ê{Xi |Yi (t) = 1, Qi ·, Zi} if Ri = 0,
(3)

where Wi · = κ−1
∑κ

j=1 Wij , Qi · = k−1
∑k

j=1 Qij , and ∧ denotes

estimate. Sugar et al. (2007) discuss a class of n
1
2 -consistent

estimators for the nuisance parameters pertaining to the same
measurement error model considered here. Explicit moment
plug-in estimates for the nuisance parameters are given in
the Supplementary Materials. The nuisance parameters can
also be estimated by performing linear regression of the
biomarker on the self-report and other observed covariates in
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the measurement error model, as discussed in the appendix of
Neuhouser et al. (2008). This method requires no replicates
of the error-prone W or Q.

The RRC estimator is found by solving the following esti-
mating equation for β = (β1, β2)′

n−1
n∑

i=1

∫ M

0

⎡⎢⎢⎢⎢⎣{X̂i (t), Zi}′

−

n∑
j=1

Yj (t){X̂j (t), Zi}′exp{β1X̂j (t) + β2Zi}
n∑

j=1

Yj (t)exp{β1X̂j (t) + β2Zi}

⎤⎥⎥⎥⎥⎦ dNi (t) = 0.

(4)

The ordinary regression calibration (RC) estimator is found
by a similar equation to (4), only X̂j is estimated only once
(at t = 0) instead of being reestimated for each risk set. The
RC and RRC estimators are generally not consistent for the
true β, even if Xi is normally distributed, as the distribu-
tion for Xi |{Yi (t) = 1, Wi ·, Qi ·, Zi} is not normal typically
(Prentice, 1982). In the classical measurement error setting,
regression calibration provides an estimate for β with lit-
tle asymptotic bias, provided there is small to moderate β
and failure probabilities are small (Prentice, 1982, Xie et al.,
2001). In many settings this simple estimator substantially
eliminates the naive estimator bias and has good efficiency.
Issues of bias will be explored for the proposed RRC esti-
mator using simulation studies. Regularity conditions suffi-
cient for asymptotic normality are listed in the Supplementary
Materials.

2.3 Conditional Score
Stefanski and Carroll (1987) developed the CS estimator for
generalized linear models. In the CS approach, a joint proba-
bility model for the mismeasured covariates and the response
variable Y is assumed, and the unobserved covariates are
treated as parameters. The CS estimating equation is ob-
tained by conditioning the derived estimating equation on the
sufficient statistics for the unobserved covariates, the Xi in our
setting. Tsiatis and Davidian (2001) adapted this approach to
the partial likelihood score, assuming the mismeasured covari-
ates follow a linear mixed effects model with classical normal
measurement error. Here, their CS method is extended to the
generalized error model described above.

First consider an individual in the biomarker subset. As-
suming normally distributed errors, one can condition the
likelihood of {dNi (t), Qi , Wi} given {Xi , Zi , Yi (t) = 1} on
the statistic

ζi =
β1Σe i

Σε i
dNi (t) + Σε i

(δ1 + δ3Zi )(Qi · − δ0 − δ2Zi ) + Σe i
Wi ·

Σe i
+ Σε i

(δ1 + δ3Zi )2 ,

where Σε i
= Σε /κ is the variance of the error in Wi · and Σe i

=
var(Qi ·|Xi , Zi ) = aebZ i + Σξ /k. The resulting conditional

intensity

lim
dt→0

dt−1P{dNi (t) = 1|ζi , Zi , Yi (t)}

= λ0(t) exp

{
β1ζi − β2

1Σe i
Σε i

/2
Σe i

+ Σε i
(δ1 + δ3Zi )2 + β2Zi

}
Yi (t),

does not depend on the unobserved Xi . Similarly, for a non-
member of the biomarker cohort, conditioning on the statis-
tic ζi = β 1Σe i

(δ1+δ3Z i )2 dNi (t) + (δ1 + δ3Zi )−1(Qi · − δ0 − δ2Zi ) gives
the conditional intensity

lim
dt→0

dt−1P{dNi (t) = 1|ζi , Zi , Yi (t)}

= λ0(t) exp

{
β1ζi − β2

1Σe i
/2

(δ1 + δ3Zi )2 + β2Zi

}
Yi (t).

As in the classical measurement error case, it can be shown
ζ i in both cases above is of the form ζi = W̃i · + β1Σ̃i dNi (t),
where W̃i ·|Xi has mean Xi and variance Σ̃i . For the biomarker
cohort, W̃i · is a weighted average of the self-report mea-
sure Qi ·, recentered and rescaled so that it is unbiased for
Xi at the true value of the nuisance parameters, and the
biomarker Wi ·, where the weights are inversely proportional
to the error variance in these two variables. For the non-
members of the biomarker cohort, W̃i · is simply the recen-
tered and rescaled Qi ·. Now define E0i (t; β, φ) = exp(β1ζi −
β2

1 Σ̃i /2 + β2Zi )Yi (t), where φ is the vector of error model nui-
sance parameters. Proceeding in a manner similar to Tsiatis
and Davidian (2001), the estimating equation for β1 is given
by

∑
z∈{Z }

n z∑
i=1

∫ M

0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ζz i −

n z∑
j=1

ζz j E0j (t, β, φ̂)

n z∑
j=1

E0j (t, β, φ̂)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
dNi (t) = 0,

(5)

where for the Z = z stratum, nz denotes the number of in-
dividuals and subscript zi denotes the ith member. This CS
equation reduces to the ordinary stratified Cox partial like-
lihood score equation when there is no measurement error,
i.e., when δ = (0, 1, 0, 0) and Σξ = Σε = 0. As discussed in
Section 2.1, a plug-in estimate for the vector of the measure-
ment error nuisance parameters can be estimated separately.
Details of this derivation and regularity conditions for equa-
tion (5) are provided in the Supplementary Materials.

A second estimator β̂w
cs using a CS approach can be ob-

tained by taking a weighted combination of two estimating
functions: (1) the CS function for β of Tsiatis and David-
ian (2001), which assumes classical measurement error, using
only the biomarker data Wij , and (2) the left-hand side of
the proposed CS equation (5), using only the self-report data
Qij . For the latter CS, the biomarker data are still needed

to estimate the nuisance parameters. Subject to normality
and regularity conditions, every weighted average of these
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two CS estimating equations would be consistent for β. One
could choose the weight w that minimizes the variance of β̂

w

cs .
This strategy is evaluated in the simulation study that fol-
lows. Note, however, this approach may not be practical if the
biomarker subsample includes few uncensored failure times.

2.4 Nonparametric Corrected Score
The idea behind the corrected score approach for consistent
estimation with mismeasured covariates is to derive the nec-
essary adjustment to the estimating equation with the error-
prone covariate so that it has the same expected value as the
desired estimating equation with the true covariate and out-
come of interest. Nakamura (1992) and Buzas (1998) devel-
oped a parametric corrected score for Cox regression. Huang
and Wang (2000, 2006) developed NP scores for Cox regres-
sion assuming classical measurement error. The estimator of
Huang and Wang (2006) requires replicate mismeasured co-
variates only on a subset and is extended here to the error
model in Section 2.1.

Define X̃i to be the main instrument Qi · recentered
and rescaled by the nuisance parameters δ = (δ0, δ1, δ2, δ3)
from the error model in equation (1), i.e., X̃i (δ) = (Qi · −
δ0 − δ2Zi )/(δ1 + δ3Zi ). At the true parameter value δ0 =
(δ00, δ10, δ20, δ30), the variable X̃i is composed of Xi plus an
error term. That is X̃i (δ0) = Xi + (γi + ξi ·)/(δ10 + δ30Zi ) =
Xi + νi , where ν i given Zi = z has zero mean and variance
(Σγ i · + Σξ i ·)/(δ10 + δ30z)2. With this transformed covariate
X̃i (δ), one can adapt the corrected score approach of Huang
and Wang (2006). For consistent estimation, the method of
Huang and Wang (2000, 2006) requires there to be individu-
als with at least two “error-prone” measures observed, which
are conditionally independent given Xi and whose errors are
independent of Xi and the at-risk process. The distribution
of the error in X̃i depends on Zi so if Zi , either through cor-
relation with Xi or independently, is associated with the haz-
ard, then the error ν i will be correlated with both Xi and
I{Yi (t) = 1}. Assuming discreteness and conditioning on the
value of Zi , ν i is independent of Xi , the failure time, and εi .
Thus by stratifying the partial likelihood score on Z, a tech-
nique similar to Huang and Wang (2006) can be applied to
achieve consistency.

To derive the corrected score, first note at δ = δ0 the solu-
tion to the following estimating equation based only on indi-
viduals in the biomarker subset:

∑
z∈{Z }

n z∑
i=1

∫ M

0

Rz i

⎡⎢⎢⎢⎢⎣X̃z i (δ)

−

n z∑
j=1

Yz j (t)Wz j exp{β1X̃z j (δ)}
n z∑
j=1

Yz j (t)exp{β1X̃z j (δ)}

⎤⎥⎥⎥⎥⎦ dNz i (t) = 0,

is consistent for β1; where for the Z = z stratum, nz denotes
the number of individuals, and subscript zi denotes the ith
member. This equation can be rewritten as

∑
z∈{Z }

n z∑
i=1

∫ M

0

Rz i

×

⎡⎢⎢⎢⎢⎣X̃z i (δ) −

n z∑
j=1

Yz j (t)X̃z j exp{β1X̃z j (δ)}
n z∑
j=1

Yz j (t)exp{β1X̃z j (δ)}

+

n z∑
j=1

Yz j (t){X̃z j (δ) − Wz j }exp{β1X̃z j (δ)}
n z∑
j=1

Yz j (t)exp{β1X̃z j (δ)}

⎤⎥⎥⎥⎥⎦ dNz i (t) = 0.

This suggests the following corrected score equation based
on the entire cohort:

∑
z∈{Z }

n z∑
i=1

∫ M

0

⎡⎢⎢⎢⎢⎣X̃z i (δ) + D̂z (θ, t)

−

n z∑
j=1

Yz j (t)X̃z j (δ)exp{β1X̃z j (δ)}
n z∑
j=1

Yz j (t)exp{β1X̃z j (δ)}

⎤⎥⎥⎥⎥⎦ dNz i (t) = 0,

(6)

where

D̂z (θ, t) =

n z∑
i=1

Yz j (t)Rz i{X̃z i (δ) − Wz i}exp{β1X̃z i (δ)}
n z∑
i=1

Yz j (t)Rz iexp{β1X̃z i (δ)}
,

and θ = (β1, δ). The estimate of Dz (θ, t) is a nonparamet-
ric moment estimator using data from individuals in the
biomarker subcohort with Zi = z. If the value of the nuisance
parameter δ is not known, a separate moment estimator can
again be used as a plug-in. Notably, a subset of individuals
with at least one measure of both W and Q at risk at time t
is all that is necessary to estimate D̂z (θ, t). The solution β̂np

to equation (6) is referred to as the NP estimator.
As was done for the CS approach in Section 2.3, a sec-

ond potentially more efficient nonparametric estimator β̂w
np

can be obtained by taking a weighted average of the above
score equation (6) and the nonparametric score equation for
classical measurement error (Huang and Wang, 2000, 2006)
based on the biomarker data alone. The weight w can be cho-
sen to minimize the sample variance of β̂w

np .
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3. Estimation of Cumulative Baseline Hazard
Function

For the assumed Cox model, the Breslow estimator for the
cumulative baseline hazard is

Λ̂0(t) =
∫ t

0

dN (u)
n∑

i=1

Yj (u)exp(β̂1Xj + β̂2Zj )

=
∑
T i ≤t

Δi∑
j∈Ri

exp(β̂1Xj + β̂2Zj )
.

Huang and Wang (2000) provided a nonparametric consis-
tent estimator for Λ0 under classical measurement error using
a representation of this estimator as a functional of empirical
processes. This estimator, unlike their β̂, requires additional
assumptions of mean zero and symmetric error. Making these
assumptions for ε only in (2), we extend their estimator to
accommodate error model (1). We adopt their notation, us-
ing Ê to denote the sample empirical mean and I(U = min(T,
C)≥ u) in place of Y(u) to highlight the connection between
their estimator and equation (7) below. For notational sim-
plicity, assume two repeat measures of Q on everyone (ki =
2). One approach to estimating Λ0 involves stratifying on val-
ues of Z, so that approximately λz0(t) = λ0(t)exp(β2Z), where
Z denotes a representative Z-value in stratum z. A consistent
estimator for Λz0(t) for stratum Z = z is

Λ̂np
z 0(t; β̂1; δ̂) =

(Ê [I(Z = z)Rexp{β̂1(W (1) − W (2))/2}])−1

× Ê(I(Z = z)Rexp[β̂1{X̃(δ̂) − (W (1) + W (2))/2}])

×
∫ t

0

dÊ{I(Z = z)ΔI(U ≤ u)}
Ê [I(Z = z)exp{β̂1X̃(δ̂)}I(U ≥ u)]

,

(7)

where β̂1 is the solution to (6). Stratification is use-
ful, as in (6), because the error in X̃ij depends on val-
ues of Z. For the RC and RRC estimators, this also
leads to the convenient overall estimator of Λ0, Λ̂0(t) =∑

z∈{Z }
∫ t

0 exp(−β̂2z)nz (u)n(u)−1Λ̂np
z 0(du; β̂1, δ̂), where nz (u)

and n(u) denote the risk set size in stratum Z = z and the
overall risk set size, respectively, at time u. Equation (7) re-
lies only on X̃ derived from the error model and a suitable
estimate of β, and it can be used in conjunction with any of
the hazard ratio estimators described above. Details showing
consistency are provided in the Supplementary Materials.

4. Simulation Study
Through simulation, the relative performance of the risk
set regression calibration (RRC), CS, and NP are stud-
ied. Properties of these estimators will be compared to the
true method, Cox regression on the unobserved true expo-
sure Xi ; the naive method, Cox regression on the error-
prone Qi ·; and RC. For the CS and NP methods, we exam-
ine the performance of the weighted estimator described in
Sections 2.3 and 2.4 compared with the classical measurement
error versions of these estimators based on the biomarker data

alone. We compare performance for different scenarios that
vary the magnitude of the relative risk parameter β, the ran-
dom and systematic subject-specific measurement error nui-
sance parameters, and the assumed covariate and error dis-
tributions. We also consider versions of these estimators that
ignore the dependence of subject-specific error variance on the
observed covariate Z. Standard errors for the error-correction
estimators are estimated using a bootstrap procedure.

For this simulation study, the cohort size is set at 1000
and the randomly selected biomarker subset at 250. Individ-
uals have two copies of the main instrument Qij ; biomarker
cohort members have two copies of the biomarker Wij . Let η =
(δ0, δ1, δ2, δ3, a, b), from the measurement error model (1). The
scenario η = (0, 0.9,−0.2,−0.3, 0.5, log 2) represents a moder-
ate amount of subject-specific error, with 10% scale bias for
Zi = 0 and 40% for Zi = 1. The variance for γ i , the subject-
specific random effect term in (1), is allowed to vary between
0.5 (Zi = 0) and 1 (Zi = 1), whereas the variances of εij and ξij

are fixed at 0.5. The scenario η = (0, 0.5,−0.2,−0.2, 0.5, log 2)
represents strong subject-specific bias, with 50% scale bias for
Zi = 0 and 70% for Zi = 1; variances for error terms γ i , εij and
ξij are kept as before. Results are presented for β = log 1.5,
log 3. Note that log 3 is quite extreme, with a hazard ratio of
3 for a unit increase in a standard normal exposure variable. It
is included here because the regression calibration estimator
is known to perform less well in Cox regression for large β (Xie
et al., 2001). Survival data are generated with an exponential
distribution with unit rate and a fixed censoring time of t0 =
1, resulting in roughly 40% censoring. Much larger censoring
rates, with associated smaller biases for regression calibration
procedures, attend the type of application that motivated this
research.

Mean bias, bootstrap standard deviation (BSD), empirical
standard deviation (across simulations), root mean squared
error (RMSE), and empirical coverage probability for the
bootstrap 95% confidence intervals (CIs) are provided. Boot-
strap estimates are based on 100 bootstrap samples and the
empirical results are based on 1000 simulations.

Table 1 presents the results under normal covariate and
error distributions. Xi and Zi are generated from a bivari-
ate normal with zero mean, unit variance, and ρ = 0.5.Zi

is converted to a binary indicator variate for being above
the median. The upper left of Table 1 shows the results for
β = log 1.5 and moderate systematic error. The naive estimate
has a bias of -0.217 (54% reduction from target) and a smaller
standard error than for the estimate based on the true expo-
sure, leading to 0% coverage for a nominal 95% CI. For this
scenario, with moderate error and β = log 1.5, all of the mea-
surement error corrected methods had small biases and came
close to the nominal 95% coverage. The nonparametric esti-
mators had the largest sample standard error. For the strong
systematic error scenario and β = log 1.5 (top right), results
were similar. The bias for the RRC is somewhat lower than
for RC, but the RC estimator had the smallest mean-squared
error of all the methods.

The lower half of Table 1 shows the results for the same er-
ror settings, with β = log 3. As expected, bias of the regression
calibration estimators increased, but RRC had less bias and
better RMSE than RC. For the larger β, CS had the small-
est bias, good nominal coverage, and nearly the same RMSE
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Table 1
Simulation results for the general measurement error model with Gaussian subject-specific and random error. For

1000 simulated data sets, the mean bias, empirical standard deviation (SD), bootstrap standard deviation (BSD), RMSE, and
estimated 95% coverage probability (CP) are given for β = log 1.5, log 3.

Moderate subject-specific bias Strong subject-specific bias

β = log 1.5 Bias SD BSD RMSE CP Bias SD BSD RMSE CP

True 0.000 0.041 0.041 0.041 96.5 0.000 0.041 0.041 0.041 96.5
Naive −0.217 0.032 0.032 0.219 0.0 −0.265 0.037 0.037 0.268 0.0
RC −0.014 0.063 0.062 0.065 92.9 −0.016 0.069 0.069 0.071 93.3
RRC −0.012 0.068 0.073 0.069 95.4 −0.013 0.073 0.073 0.074 93.4
CS B 0.010 0.099 0.102 0.099 95.8 0.010 0.099 0.102 0.099 95.8
CS W 0.011 0.091 0.096 0.092 96.5 0.010 0.102 0.105 0.102 95.6
NP B 0.014 0.123 0.128 0.124 96.9 0.014 0.123 0.128 0.124 96.9
NP W 0.012 0.119 0.123 0.120 96.7 0.007 0.122 0.126 0.122 95.7

β = log 3 Bias SD BSD RMSE CP Bias SD BSD RMSE CP

True 0.001 0.050 0.051 0.050 95.4 0.001 0.050 0.051 0.050 95.4
Naive −0.678 0.035 0.034 0.679 0.0 −0.806 0.039 0.038 0.806 0.0
RC −0.190 0.095 0.094 0.213 46.2 −0.219 0.098 0.097 0.240 38.5
RRC −0.120 0.107 0.119 0.161 79.7 −0.146 0.107 0.108 0.181 69.9
CS B 0.035 0.182 0.198 0.186 97.4 0.035 0.182 0.198 0.186 97.4
CS W 0.023 0.171 0.183 0.172 96.5 0.025 0.180 0.195 0.181 97.6
NP B 0.070 0.255 0.289 0.265 96.6 0.070 0.255 0.289 0.265 96.6
NP W 0.056 0.246 0.275 0.252 96.3 0.041 0.262 0.276 0.265 95.2

True: Cox regression with true X; Naive: Cox regression with unadjusted Q; RC: ordinary regression calibration; RRC: risk set regression
calibration; CS B: CS from Tsiatis and Davidian (2001) using biomarker W data only; CS W: weighted combination of CS using Q only and W
only; NP B: NP equation from Huang and Wang (2000) using only W; NP W: weighted combination of NP using Q only and W only.

as RRC. The RRC estimator had the lowest mean-squared
error for the large β for both subject-specific error sce-
narios, although it had appreciable bias and poorer cover-
age for the larger value of β than either the CS or NP
estimator.

The CS and NP estimators had variances that were appre-
ciably larger than the other estimators. It is noteworthy for
this setting, with relatively large error in Qij compared to Wij

and a substantial number of events observed in the biomarker
subset, the NP and CS estimators based on the complete data
had modest to no gain in efficiency over their counterparts, CS
B and NP B, based on the biomarker subset alone. Sugar et al.
(2007) also observed the CS estimator in the context of logis-
tic regression with the same general measurement error model
was highly variable, particularly in presence of strong subject-
specific bias. For classical measurement error, the nonpara-
metric corrected estimator has been observed to have numer-
ical instability and problems due to multiple roots (Song and
Huang, 2005, Carroll et al., 2006), with these problems get-
ting worse as the measurement error variance increases (Song
and Huang, 2005). In the case of multiple roots, the root
closest to the RC estimate was selected. These simulations
suggest that for a similar setting of moderate sample sizes,
potentially large and normal error, the RRC and CS methods
perform better overall, with CS preferred for very extreme
β values.

To explore robustness, a similar set of simulations were re-
peated with skewed distributions. The systematic and random
error terms in Wij and Qij were generated from a unit expo-
nential distribution, reflected about zero to create left skew-
ness and offset by its mean to create mean-zero errors. The

same bivariate normal distribution was used to create X and Z
as above, and then both were exponentiated to create skewed
log-normal random variables. Results are shown in Table 2.
As expected, the regression calibration estimators, which rely
on approximate normality, have more bias particularly for the
larger β. For the extreme β, however, the RRC estimator was
much less affected. The CS methods, which rely on Gaussian
error for consistency, had noticeably larger bias and relatively
larger variance. The weighted CS estimator did not improve
on the CS estimator based on the biomarker alone, likely due
to the larger amount of error and skewness in Q. The dis-
played CS W estimator had a weight of 0.1 for the score us-
ing information from Q, having the smallest variance among
the (nontrivial) decile weights. The skewness had a larger im-
pact on the relative performance of the RC, RRC, and CS
estimators (in terms of bias and variance) for the larger β.
The performance of the NP estimator, as expected, was un-
affected by the skewness in the distributions, with little small
sample bias, good nominal coverage, and nearly or the small-
est RMSE for all scenarios. The RRC estimator, even with
large β and strong systematic error, had reasonable coverage
and bias less than 15%.

Table 3 compares the proposed estimators to those incor-
rectly based on the error model (1) without dependence of
var(γ i ) on Zi . Scenarios are the same as in Table 1, except the
impact of Z in var(γ i ) was increased with b = log 4. It is inter-
esting to note that the misspecified RC and RRC estimators
have similar bias but increased standard errors compared to
their correctly specified versions. The misspecified CS estima-
tor contains increased bias and standard errors, with similar
coverage. The NP estimator, because it uses rescaling by Zi ,
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Table 2
Simulation results for the general measurement error model with skewed distributions for the model covariates as well as the
subject-specific and random error. For 1000 simulated data sets, the mean bias, empirical standard deviation (SD), bootstrap

standard deviation (BSD), RMSE, and estimated 95% coverage probability (CP) are given for β = log 1.5, log 3.

Moderate subject-specific bias Strong subject-specific bias

β = log 1.5 Bias SD BSD RMSE CP Bias SD BSD RMSE CP

True 0.002 0.020 0.020 0.020 94.6 0.002 0.020 0.020 0.020 94.6
Naive −0.082 0.022 0.022 0.085 3.8 −0.072 0.042 0.034 0.083 45.4
RC −0.025 0.099 0.079 0.102 86.9 −0.045 0.089 0.069 0.099 88.7
RRC 0.016 0.096 0.121 0.097 93.7 0.044 0.076 0.071 0.088 82.1
CS B 0.012 0.048 0.050 0.050 94.9 0.012 0.048 0.050 0.050 94.9
CS W 0.028 0.061 0.060 0.067 93.5 0.054 0.075 0.076 0.092 88.4
NP B 0.011 0.057 0.061 0.058 96.2 0.011 0.057 0.061 0.058 96.2
NP W 0.008 0.055 0.061 0.056 96.6 0.009 0.056 0.060 0.057 96.4

β = log 3 Bias SD BSD RMSE CP Bias SD BSD RMSE CP

True 0.003 0.038 0.037 0.038 94.5 0.003 0.038 0.037 0.038 94.5
Naive −0.491 0.032 0.029 0.492 0.0 −0.590 0.051 0.038 0.592 0.0
RC −0.343 0.193 0.152 0.394 44.4 −0.458 0.157 0.122 0.485 0.7
RRC −0.077 0.197 0.201 0.211 94.3 −0.116 0.167 0.161 0.203 90.9
CS B 0.136 0.160 0.184 0.210 99.0 0.136 0.160 0.184 0.210 99.0
CS W 0.138 0.226 0.225 0.265 94.9 0.112 0.231 0.249 0.257 98.0
NP B 0.068 0.210 0.243 0.221 96.6 0.068 0.210 0.242 0.221 96.6
NP W 0.059 0.195 0.234 0.204 97.3 0.064 0.209 0.237 0.219 96.6

True: Cox regression with true X; Naive: Cox regression with unadjusted Q; RC: ordinary regression calibration; RRC: risk set regression
calibration; CS B: CS from Tsiatis and Davidian (2001) using biomarker W data only; CS W: weighted combination of CS using Q only and W
only; NP B: NP equation from Huang and Wang (2000) using only W; NP W: weighted combination of NP using Q only and W only.

Table 3
Simulation study comparing the proposed estimators with misspecified versions of the measurement error variance, under the
general measurement error model with Gaussian distributions for the model covariates as well as for the subject-specific and
random error. For 1000 simulated data sets, the mean bias, empirical standard deviation (SD), bootstrap standard deviation

(BSD), RMSE, and estimated 95% coverage probability (CP) are given for β = log 1.5, log 3.

Moderate subject-specific bias Strong subject-specific bias

β = log 1.5 Bias SD BSD RMSE CP Bias SD BSD RMSE CP

True 0.000 0.041 0.041 0.041 96.5 0.000 0.041 0.041 0.041 96.5
Naive −0.262 0.028 0.028 0.263 0.0 −0.308 0.031 0.031 0.309 0.0
RC −0.014 0.064 0.063 0.066 93.1 −0.016 0.069 0.070 0.071 93.2
RC-M −0.008 0.071 0.071 0.071 95.0 −0.011 0.080 0.082 0.081 95.6
RRC −0.014 0.069 0.074 0.070 94.7 −0.014 0.073 0.073 0.074 93.1
RRC-M 0.007 0.077 0.077 0.077 95.9 −0.004 0.083 0.084 0.083 96.2
CS W 0.014 0.098 0.102 0.099 96.0 0.008 0.105 0.107 0.105 95.5
CS W-M −0.040 0.101 0.111 0.109 94.3 −0.020 0.153 0.146 0.155 93.9
NP W 0.008 0.119 0.125 0.120 96.6 0.000 0.123 0.127 0.123 95.5

β = log 3 Bias SD BSD RMSE CP Bias SD BSD RMSE CP

True 0.001 0.050 0.051 0.050 95.4 0.001 0.050 0.051 0.050 95.4
Naive −0.790 0.031 0.029 0.791 0.0 −0.901 0.032 0.031 0.901 0.0
RC −0.193 0.096 0.095 0.216 45.9 −0.220 0.099 0.097 0.241 38.0
RC-M −0.196 0.102 0.101 0.221 47.6 −0.210 0.105 0.105 0.235 46.4
RRC −0.131 0.106 0.118 0.169 77.8 −0.150 0.107 0.108 0.184 68.2
RRC-M −0.088 0.110 0.109 0.141 83.8 −0.157 0.105 0.106 0.189 63.2
CS W 0.020 0.177 0.189 0.178 96.8 0.026 0.178 0.195 0.180 97.8
CS W-M 0.061 0.253 0.249 0.261 95.6 0.067 0.191 0.219 0.202 97.6
NP W 0.044 0.246 0.277 0.250 96.1 0.023 0.259 0.278 0.260 94.7

True: Cox regression with true X; Naive: Cox regression with unadjusted Q; RC: ordinary regression calibration; RRC: risk set regression
calibration; CS W: weighted combination of CS using Q only and W only; NP W: weighted combination of the nonparametric estimator using Q
only and W only. Misspecified error-correction estimators are noted by a −M.
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induces and adjusts for error variance that depends on Z; so
misspecification is not possible.

5. Women’s Health Initiative (WHI) Example
The WHI Dietary Modification (DM) Trial followed 48,835
women for an average of 8.1 years and examined whether
a low-fat dietary pattern intervention could lower the risk
of breast and colorectal cancer (Women’s Health Initiative
Study Group, 1998). Prentice et al. (2006) reported a non-
significant reduction in breast cancer of 9% (logrank p=0.07)
for the intervention compared to the control (usual diet) arm.
There was no suggested reduction for colorectal cancer (Beres-
ford et al., 2006). An important question is whether the equiv-
ocal breast cancer finding is from a lack of efficacy or a lack
of adherence to the diet, but actual diet is not obtainable. In-
stead, the primary tool for measuring diet was a self-reported
FFQ, an instrument known to be subject to both random and
subject-specific reporting errors.

The DM trial included a Nutritional Biomarker Substudy
(NBS) that collected self-reported intake along with several
objective biomarkers on 544 weight-stable women randomly
selected at a representative set of 12 of the 40 participat-
ing clinical centers. The NBS protocol included the doubly
labeled water recovery marker for total energy consumption
(Schoeller, 1988). There were 110 women recruited from early
NBS enrollees who had repeat biomarker measures, allowing
the general measurement error model to be identifiable. Fur-
ther details of the NBS study and an analysis of the measure-
ment error in the WHI dietary instruments were reported by
Neuhouser et al. (2008), who found BMI to a strong deter-
minant of subject-specific bias in this cohort. In this illustra-
tive example, we fit the measurement error in equation (1)
with possible dependence on obesity status (BMI ≥ 30) and
apply the developed methods to provide error-adjusted esti-
mates of the risk of breast cancer associated with total energy
consumption. Because the baseline FFQ was used to deter-
mine eligibility in the DM trial by requiring a minimum of
32% estimated calories from fat, the baseline for this analysis
was taken as 1 year after enrollment, at which time another
FFQ was obtained. We analyze data from the usual diet (con-
trol) arm.

5.1 Results
There were 25,803 women in the DM control group included
in this analysis, 884 of whom developed breast cancer follow-
ing the 1 year FFQ collection. The estimate (95% CI) for
the breast cancer hazard ratio associated with a 20% increase
in energy intake was: 1.00 (0.97, 1.04) for the naive estimate,
1.24 (1.03, 1.48) for RC, 1.23 (1.03, 1.48) for RRC, 1.30 (0.80,
2.10) for CS and 1.43 (0.95, 2.15) for NP. Note the hazard ra-
tio for a fractional increase in intake is constant under the Cox
model applied, because the log-hazard ratio was assumed to
be a linear function of log consumption. A 20% increase is
roughly the difference between the third and first quartile of
energy consumption, as measured by the recovery biomarker
(2268 versus 1869 calories). The RC and RRC estimates are
nearly identical, because for this relatively rare disease with
most censoring at the planned study termination, the dis-
tribution for E(X|W, Q, Z) changes very little across risk
sets. The NP hazard ratio estimate is slightly larger than the

regression calibration estimates, and its 95% CI is much wider.
The CS estimate is the most variable of the error-corrected
estimates and had some numerical problems, with skewness in
the bootstrap estimates and more than 4% of the bootstrap
iterations failing to find a root to the score equation.

To help interpret the above estimates, a simulation study
was built on the observed WHI data. The simulation cohort
had 25,000 individuals, with 540 in the biomarker sample and
110 in its reliability subset (both randomly selected). The self-
reported and biomarker values for log energy were well ap-
proximated by Gaussian distributions in the NBS (Figure 1,
Supplementary Materials). BMI and X were generated as mul-
tivariate normal variates on the log scale. Roughly 25% of the
simulated cohort were obese. In the fitted error model (1), δ3

was estimated to be nearly zero, so the model was applied
without this term. The variance of ε was 30% of the total
variance in W. The variance of the subject-specific bias plus
random error terms was extreme, about 95% the total vari-
ance of Q. Survival time was generated according to a propor-
tional hazards model dependent on log energy consumption
with baseline survival an exponential distribution with overall
event rate of about 3%.

Table 4 shows results for β = 0 and 1.25; i.e., the β for
which a 20% increase in consumption leads to a hazard ratio
of 1 and 1.26, respectively. None of the estimators showed ev-
idence of bias under the null. The naive estimator under β =
1.25 had extreme bias, nearly 95% of the true value, and small
standard error, leading to 0% empirical coverage. The RC and
RRC estimators performed well for β = 1.25, having no de-
tectable bias. There were some numerical problems for the CS
and NP estimators, with more than 15% of the simulations
failing to find a solution. These estimators were quite vari-
able and had some small sample bias, although the coverage
probabilities were close to the nominal 95%. Using the empir-
ical mean and SD across simulations, the estimated hazard
ratio (empirical 95% CI) for a 20% increase in intake is: 1.01
(0.98, 1.05) for the naive method, 1.25 (0.98, 1.60) for RC, 1.25
(0.98, 1.60) for RRC, 1.18 (0.69, 2.03) for CS, 1.23 (0.73, 2.08)
for NP. The CIs for the regression calibration estimators are
considerably narrower than for the other two error-corrected
estimators. The CS estimator had the largest variance. This
simulation study suggests for this example, where there was
a sizable biomarker subset, that each error correction method
is providing approximately unbiased estimates of the risk as-
sociated with energy intake, with RC or RRC preferred due
to their comparatively better efficiency. Another advantage of
regression calibration is that standard software can be used
to find the parameter estimates, and replicates of neither the
biomarker nor self-report are required.

6. Discussion
In this work, three methods for hazard ratio estimation were
extended for the setting where the exposure of interest was
measured with subject-specific bias and random error in the
main cohort and additionally with classical measurement er-
ror on a subset. We also provided an estimator of the cu-
mulative baseline hazard function. This error model is more
flexible than others considered previously for these methods
and does not rely on a validation subset. The extensions pro-
vided here allow for a more flexible error structure and also
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Table 4
Results of simulations designed to emulate hazard ratio estimation for energy in relation to breast cancer in the WHI, using

500 simulated data sets. The mean bias, empirical standard deviation (SD), RMSE, type I error (α) for β = 0, and estimated
95% coverage probability (CP) for β = 1.25 are given.

β = 0 Bias SD RMSE α β = 1.25 Bias SD RMSE CP

True 0.004 0.296 0.296 0.046 True 0.006 0.302 0.302 95.4
Naive −0.008 0.105 0.105 0.056 Naive −1.181 0.106 1.189 0.0
RC −0.005 0.709 0.709 0.050 RC −0.006 0.691 0.691 96.2
RRC −0.005 0.709 0.709 0.050 RRC −0.006 0.690 0.691 96.2
CS −0.052 1.507 1.507 0.052 CS −0.318 1.510 1.543 93.1
NP 0.014 1.528 1.528 0.042 NP −0.217 1.471 1.487 95.0

True: Cox regression with true X; Naive: Cox regression with unadjusted Q; RC: ordinary regression calibration; RRC: risk set regression
calibration; CS: conditional score; NP: nonparametric corrected score.

accommodate sources of intake assessment errors that vary
across individuals.

The relocation and scaling parameters (the δ’s in (1)) are
crucial measurement model generalizations; the allowance for
correlation between replicate error-prone measurements (Q) is
also important for some of the estimation procedures (condi-
tional and nonparametric scores), while allowing the random
effect variance to depend on Z may often be less important
(Table 3). The RRC estimator is a straightforward adaption
of its counterpart for classical measurement error. The condi-
tional and nonparametric scores required more detailed cal-
culations and rely on a subtle, but necessary, stratification of
the Cox model for proper error correction. RRC is an approx-
imate method that typically incorporates some asymptotic
bias. For consistency, the proposed CS estimator relies on a
normality assumption for the error terms, but does not need a
distributional assumption for unobserved true covariate. The
nonparametric score method made no distributional assump-
tions for the error terms or the unobserved covariate.

Despite its lack of technical consistency, RRC had the
smallest mean-squared error in nearly all simulation sce-
narios considered, often by a considerable margin. Bias for
both regression calibration estimators was more noticeable
for extreme β, particularly when covariates and error terms
had skewed distributions; however, risk set regression re-
duced the bias considerably. Under Gaussian error, the CS
method had little small sample bias, maintained nominal
95% coverage, and with large β and stronger subject-specific
error, had close to the smallest mean-squared error amongst
the estimators. The CS estimator, however, was not robust to
departures from normality, with bias in the presence of skew-
ness increasing for larger β. The nonparametric method was
robust to departures from normality with little small sample
bias and good nominal coverage, and this was true for the
more extreme β and subject-specific bias. Typically, however,
the nonparametric estimates had substantially larger variance
than regression calibration.

The mean–variance tradeoff between robust nonparametric
or semiparametric methods and efficiency of parametric ap-
proaches is a familiar one for estimation. In light of the relative
success of regression calibration, it is of interest to consider
other approximate methods for this setting. Hu et al. (1998)
presented a semiparametric likelihood approach for Cox
regression with classical covariate measurement error that

uses flexible distributional assumptions on the unobserved co-
variate and in some settings performed better than regression
calibration. Alternatively, increasing the number of moments
used for regression calibration and transforming data to im-
prove the normal approximation could also be useful, and
computationally less burdensome than the available likelihood
approaches. As illustrated above, simulation studies can guide
the practitioner’s choice of an appropriate method.

In the WHI example, the association under study appeared
moderate in size, the disease relatively rare, the measurement
error substantial, and the number of disease events fairly
large. The simulations based on this example suggest these
methods provide quite adequate estimates of the hazard ra-
tio. These simulations also demonstrated that for the naive
analysis, the error in the self-reported data was large enough
to cause extreme bias and obscure a clinically relevant associa-
tion between caloric intake and disease incidence. This finding
is consistent with Prentice et al. (2009) who reported for this
cohort that several cancer endpoints had no association with
self-reported energy intake, whereas with calibrated energy
intake there were associations of public health importance.
Variation in the self-report intake variable was largely due to
measurement error in this setting. This likely contributed to
the numerical problems seen for conditional and nonparamet-
ric score estimators.

Because of the large number of nuisance parameters in the
measurement error model, it is difficult to do an exhaustive
exploration of the relative performance of these methods. For
settings with error properties much different than those stud-
ied here, further study may be needed to understand which
method is most appropriate. Some interpretational challenges
arise with any of the estimation procedures considered here if
one or more covariates (Zi ) determining the subject-specific
bias in (1) are also important mediators of the association
between Xi and the hazard ratio. See Prentice and Huang
(2011) for further discussion of this issue, and for data anal-
ysis options. The censoring mechanism could also impact the
relative performance of the methods. Regression calibration
methods work best when censoring times tend to be short, as
longer follow-up will lead to X distributions that depart more
extensively from baseline in risk sets at later failure times.
CS and nonparametric estimators on the other hand, which
do not rely on distributional assumptions for the unobserved
covariate X, are unlikely to be much affected by variations
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in the censoring distributions. The development of estimation
procedures that can accommodate departures from indepen-
dent censoring, for example through inverse censoring prob-
ability weighting, would also be of interest in the context of
our measurement model.

The bootstrap variance estimator was studied for the pro-
posed estimators. Robust variance estimators have been de-
veloped in the case of classical measurement error for each
of the methods studied (Wang, 1999; Tsiatis and Davidian,
2001; Xie et al., 2001; Huang and Wang, 2006) and a similar
approach could be taken for the proposed methods. A general
discussion of sandwich estimators in the context of measure-
ment error is provided by Carroll et al. (2006, Appendix A.6).
For ease of implementation, the bootstrap estimator is pre-
ferred.

Across all scenarios studied, the nonparametric score
method typically maintained the smallest bias and best nom-
inal coverage. The risk set regression estimator had good
relative performance, in terms of maintaining the smallest
mean-squared error. The numerical stability and ease of im-
plementation in standard software makes regression calibra-
tion attractive for settings with substantial measurement er-
ror. In settings where a very large hazard ratio is expected,
along with potentially skewed distributions for the involved
covariates, the nonparametric score estimator may be pre-
ferred. Simulation can be used to explore properties of the
estimators for the data structure in a given application, and
in particular, explore which method has the best numerical
performance, given the observed error structure in the data
and the expected size of the hazard ratio for the exposure of
interest.

7. Supplementary Materials
The Supplementary Materials referenced in Sections 2, 3,
and 4 are available under the Paper Information link at the
Biometrics website http://www.biometrics.tibs.org.
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