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ABSTRACT
When comparing survival times between groups in the setting of proportional hazards, the Cox model is
typically used for estimation and inference, the latter based on large sample considerations. Mehrotra and
Roth introduced a generalized log-rank (GLR) method for better statistical efficiency in estimating relative
risk in small samples. In this article, we propose a refined GLR (RGLR) statistic by eliminating an unneces-
sary approximation in the development of the original GLR approach, and provide further insights into
the performance of GLR and RGLR statistics. We also extend RGLR to allow for tied event times. We show
across a variety of simulated scenarios that RGLR provides a smaller bias than commonly used Cox model,
parametricmodels andGLR in small samples (up to 40 subjects per group), and has notably better efficiency
relative to Cox and parametric models in terms of mean squared error. The RGLR method also consistently
delivers adequate confidence interval coverage and Type I error control, while parametric methods and the
Cox model tend to under-perform on that front in small samples. We further show that while the perfor-
mance of the parametric model can be significantly influenced by misspecification of the true underlying
survival distribution, the RGLR approach provides a consistently low bias and high relative efficiency. We
apply all competing methods to data from two clinical trials. Supplementary materials for this article are
available online.

1. Introduction

In a typical survival analysis comparison of two groups, the haz-
ard ratio, often called the relative risk, is generally the focus of
inference. If the hazard ratio can be assumed constant through-
out time, that is, if the two groups have proportional hazard
functions, it is conventional to use the Cox proportional haz-
ards model for estimation of relative risk and the log-rank test
for hypothesis testing; the latter can be derived as a score test
via the Cox partial likelihood function (Cox 1972). However,
Cox regression is a large-sample method and small-sample sizes
(10–100 subjects per group) are quite common in real-data
applications such as early-phase clinical trials (Pocock 1983).
Besides randomized clinical trials, observational studies involv-
ing a rare disease also often have limited sample sizes. There-
fore, it is important to study analysis methods for failure time
data in small samples. Johnson et al. (1982) performed a simu-
lation study to investigate theCoxmodelwith one binary indica-
tor as the covariate under small samples. They found that when
total sample size exceeds 40, there is no censoring, and there are
equal number of subjects in the two groups, the bias of the esti-
mated log hazard ratio is reasonably low and the sample vari-
ance is similar to the asymptotic variance. However, in smaller
samples, there are nontrivial differences between the actual and
asymptotic formula-based variances.

To improve the estimation and inference of relative risk in
studies with small sample sizes, Mehrotra and Roth (2001) pro-
posed a method based on a generalized log-rank (GLR) statistic
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for the two-group comparison. They showed that even though
asymptotically the GLR method has similar performance to the
Cox approach, when the sample size is small, GLR is notably
more efficient than the Cox approach, in terms of mean squared
error (MSE) for the log relative risk when there are no ties.

In this article, we refine the GLR method by replacing pre-
viously formulated ‘‘approximate” nuisance parameters with
‘‘exact” counterparts, for settings with and without tied event
times. We show through numerical studies that the refined GLR
(RGLR) statistic provides a notably smaller bias than the GLR
statistic andmore commonly usedmethods such as the Cox and
parametric models, while providing a high relative efficiency
andmaintaining coverage for 95% confidence intervals.We pro-
vide further insights into the GLR statistic by developing an
alternate estimation approach for the nuisance parameters. We
also compare the performance of the RGLR statistic to paramet-
ricmodels, theCoxmodel, and theGLRapproach. Furthermore,
we examine RGLR’s performance with respect to Type I error
and confidence interval coverage, and we compare RGLR with
correctly and incorrectly specified parametric models. Section 2
includes the derivation of RGLR statistic for testing and
estimation, where we also describe a different approach for esti-
mating the nuisance parameters. In Section 3, we study the
numerical performance of the competing methods through a
simulation study. In Section 4, we apply the different methods
to data from two real clinical trials, and end with concluding
remarks in Section 5.
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2. Methods

2.1. Refined GLR Statistic for Hypothesis Testing with No
Tied Event Times

Suppose there are two treatment groups A and B, and we
randomize NA and NB subjects to each of the groups, respec-
tively. We assume for now that there are no tied observations.
Let t1 < t2 < · · · < tk denote the ordered observed event times
for the combined data. Let T denote the random variable for
the event time, and SB(t ) and hB(t ) denote the survival and
hazard function for T in group B. By definition, we can write
SB(t ) = P(T > t ) = exp(− ∫ t

0 hB(x)dx), so that

P(ti−1 < T ≤ ti|T > ti−1) = 1 − P(T > ti|T > ti−1)

= 1 − exp(−pi), (1)

where pi = ∫ ti
ti−1

hB(x)dx. In the development of the original
GLR statistic, 1 − exp(−pi) was simplified to pi by invoking
a first-order Taylor series approximation (Mehrotra and Roth
2001). In this article, motivated by a desire to reduce bias, we
use the exact value of 1 − exp(−pi) in a refined GLR statistic
(RGLR).

Let the random variables DiA,DiB denote the number of
events in group A and B at ti, respectively, and let Di = DiA +
DiB. Let the random variables RiA,RiB denote the number of
subjects still at risk at time ti in group A and B, respectively.
We then let riA and riB denote the observed number of subjects
at risk at time ti in group A and group B, respectively, and the
observed total number of events and observed total number of
subjects at risk at time ti as di and ri, respectively. At ti, we can
think of DiB as following a binomial distribution with probabil-
ity πiB = 1 − exp(−pi) and riB trials. Then, under the propor-
tional hazards assumption, it follows that the number of events
in group A, DiA, will follow a binomial distribution with proba-
bility πiA = 1 − exp(−θ pi) and riA number of trials, where θ is
the hazard ratio for group A versus B. LetGi = { j : max(0, di −
riB) ≤ j ≤ min(di, riA)}. Given di, riA, riB, pi, θ , the conditional
distribution of DiA follows a non-central hypergeometric distri-
bution, and we can write the probability function as

λiA ≡ P(DiA = diA|RiA = riA,RiB = riB,Di = di, pi, θ ) (2)

=
(riA
diA

)(riB
diB

)
(1 − e−pi )diB e−pi(riB−diB )(1 − e−θ pi )diA e−θ pi(riA−diA )

∑
j∈Gi

(riA
j

)( riB
di− j

)
(1 − e−pi )di− je−pi(riB−di+ j)(1 − e−θ pi ) je−θ pi(riA− j)

.

(3)

Under the assumption of di = 1 ∀i, the conditional mean
and variance of DiA, denoted by EiA(riA, riB, θ, pi) and
ViA(riA, riB, θ, pi), can be derived as the following expres-
sions:

EiA(riA, riB, θ, pi) =
∑
Gi

diAλiA = riA(eθ pi − 1)
riA(eθ pi − 1) + riB(epi − 1)

(4)

ViA(riA, riB, θ, pi) =
∑
Gi

d2iAλiA −
⎛
⎝∑

Gi

diAλiA

⎞
⎠

2

= riA(eθ pi − 1)riB(epi − 1)
[riA(eθ pi − 1) + riB(epi − 1)]2

. (5)

Note that the vector of nuisance parameters
p = (p1, p2, . . . , pk) is unknown and needs to be estimated.We
use an unconditional approach, as suggested by Mehrotra and
Roth (2001). The estimate of nuisance parameter pi is found by
maximizing the product of two unconditional binomial likeli-
hoods, Bin(riA, 1 − exp(−θ pi)) and Bin(riB, 1 − exp(−pi)):

L(pi|θ ) = π
diA
iA (1 − πiA)riA−diAπ

diB
iB (1 − πiB)

riB−diB (6)

= (1 − e−θ pi )diA (e−θ pi )riA−diA (1 − e−pi )diB (e−pi )riB−diB .

(7)

Because we are assuming no ties, the solution can be
simplified to

p̃i,θ =
⎧⎨
⎩
log

(
θriA+riB

θriA+riB−1

)
, when diA = 0, diB = 1

1
θ
log

(
θriA+riB

θriA+riB−θ

)
, when diA = 1, diB = 0.

(8)

Let p̃(θ ) denote the estimated nuisance parameter vector p,
where p̃(θ ) = ( p̃1,θ , p̃2,θ , . . . , p̃k,θ ). Then, the RGLR test statis-
tic for the general null hypothesis H0 : θ = θ0 is

RGLR[θ0, p̃(θ0)] =
∑k

i=1[diA − EiA(riA, riB, θ0, p̃i,θ0 )]2∑k
i=1ViA(riA, riB, θ0, p̃i,θ0 )

. (9)

The reference distribution for the RGLR statistic is approx-
imated with an F-distribution with degrees of freedom 1 and
k∗, where k∗ = ∑

i min(di, ri − di, riA, riB). This is the same dis-
tribution as that used for the original GLR statistic (Mehrotra
and Roth 2001). We conjecture that our RGLR statistic has the
same reference distribution as the GLR statistic because we only
changed the approximate nuisance parameters in the original
GLR formulation with “exact” counterparts, which presumably
should not affect the distribution. This is analogous to using
different estimators of variance components (nuisance parame-
ters), but the same reference null distributions in common linear
mixed effects analyses. Our conjecture is strongly supported via
simulations in Section 3. Note that under the most commonly
used null hypothesis θ0 = 1, estimation of the nuisance param-
eters is no longer required, and the RGLR statistic reduces to the
usual log-rank test statistic (Mantel 1966), which has an asymp-
totic distribution of χ2

1 .
As sample size increases, the estimate of pi approaches zero

because the time interval becomes smaller between two consec-
utive events and the probability of having an event in the inter-
val approaches zero. It follows using L’Hopital’s rule that when
pi → 0, the RGLR statistic reduces to the score statistic from the
Coxmodel. This demonstrates that the RGLR statistic is asymp-
totically similar to the Cox score statistic; this theoretical expec-
tation is supported using simulations in Section 3.

2.2. Estimation of Nuisance Parameters

The development above is similar to the logic provided by
Mehrotra and Roth (2001). However, to provide additional
insight, we show that in the set up of Mehrotra and Roth’s GLR
statistic, the estimated nuisance parameter p̃i,θ can also be esti-
mated using the inverse-variance weighted average of the cor-
responding estimates of the failure probability in each group.
Recall that we think of the number of events at time ti in group
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A and B as following two binomial distributions with proba-
bility πiA and πiB, respectively. In the setting of GLR, πiB = pi
and πiA = θ pi using the Taylor approximation. Therefore, there
are two natural estimates of the failure probability, π̂iB = diB/riB
from group B and π̂iA = diA/riA from group A. Thus, we have
two estimates of the nuisance parameter, namely p̂iB,θ = diB/riB
and p̂iA,θ = diA/(θriA). Hence,

var(piA|RiA = riA) = var(DiA)

θ2r2iA
= pi(1 − θ pi)

θriA
and

var(piB|RiB = riB) = var(DiB)

r2iB
= pi(1 − pi)

riB
.

Accordingly, if we equate pi with the inverse-variance
weighted average of p̂iA,θ and p̂iB,θ , that is, set

pi =
p̂iA,θ

var(piA|RiA=riA)
+ p̂iB,θ

var(piB|RiB=riB)

1
var(piA|RiA=riA)

+ 1
var(piB|RiB=riB)

,

and solve for pi, we get the same estimated p̃i,θ as that obtained
via maximization of the product of the aforementioned two
Binomial distributions (direct MLE approach). Since the for-
mula for p̃i,θ is somewhat complex, using the inverse-variance
weighted average approach provides an intuitive and simple path
to estimate the nuisance parameters.

In the setting of RGLR, however, these two approaches do not
give the same estimates, because the relationship between the
nuisance parameter pi and failure probability πiB is no longer
linear. There are no simple closed-form solutions for the nui-
sance parameters using the inverse-variance weighted average
approach. Although numerical solutions can still be achieved,
we prefer the direct MLE approach because it delivers an exact
closed-form solution. Further details of the derivation using the
two approaches for the RGLR statistic can be found in the sup-
plementary materials.

2.3. Inference using the Refined GLR Estimator for Relative
Risk

The RGLR statistic is in quadratic form, which guarantees a
unique minimum. Because small values of the RGLR statistic
support the null hypothesis, we can derive an estimator for rel-
ative risk, θ̂RGLR, by finding the θ that minimizes the RGLR test
statistic.

The confidence interval of the RGLR estimator can then
be calculated using F(1, k∗) as the reference distribution.
Therefore, the 100(1 − α)% confidence interval for θ̂RGLR is
(θL

RGLR, θ
U
RGLR), where

θL
RGLR = inf

θ
{θ : RGLR(θ, p̃(θ )) ≤ Fα(1, k∗)} (10)

θURGLR = sup
θ

{θ : RGLR(θ, p̃(θ )) ≤ Fα(1, k∗)}. (11)

2.4. Extension of RGLR to Accommodate Tied Event Times

In this section, we extend the RGLR statistic to allow for
tied event times so that the method is more applicable for
real datasets. There are several approaches for handling ties in
the Cox model, including Breslow (1974), Efron (1977), and

Kalbfleisch and Prentice (1973). Mehrotra and Roth (2011)
extended the GLR statistic to incorporate ties following analogs
of Kalbfleisch and Prentice’s and Efron’s approaches.We propose
to use Efron’s approach to handle ties for theRGLR statistic given
that it is easier to implement.

With ties, the previous assumption that di = 1 ∀i no longer
holds, and the conditional expected value and variance func-
tions need to be updated to average over all possible untied
orderings of tied event times at each time point i. Suppose in
the time interval (ti−1, ti], there are di(> 1) event times given
by ti,1 < ti,2 < · · · < ti,di . Now, if we construct an average 2 × 2
life table at the unobserved true event time ti, j, the average
number of failure event times for group A and B is diA/di and
diB/di, respectively, and the average number of subjects still at
risk is riA − jdiA/di and riB − jdiB/di for group A and B, respec-
tively, where j = 1, 2, . . . , di. Then, summing across the di time
points, we get

ĒiA(θ, pi,1, pi,2, . . . , pi,di )

=
di∑
j=1

EiA
(
riA − ( j − 1)

diA
di

, riB − ( j − 1)
diB
di

, θ, pi, j
)

(12)
V̄iA(θ, pi,1, pi,2, . . . , pi,di )

=
di∑
j=1

ViA

(
riA − ( j − 1)

diA
di

, riB − ( j − 1)
diB
di

, θ, pi, j
)

,

(13)

where EiA andViA are shown in equations (4) and (5), using the
margins of the average 2 × 2 life table at each of the unobserved
true event times for the di events.

We derive the estimated nuisance parameter using the likeli-
hood approach as before, where now

L(pi, j|θ ) = π
diA/di
iA (1 − πiA)riA− jdiA/diπ

diB/di
iB

×(1 − πiB)
riB− jdiB/di (14)

= (1 − e−θ pi, j )diA/di (e−θ pi, j )riA− jdiA/di

×(1 − e−pi, j )diB/di (e−pi, j )riB− jdiB/di . (15)

Tofind the nuisance parameter thatmaximizes equation (15),
we take the log and the first-order derivative respect to pi, j and
set it to zero. The estimating equation is

diA
di

· θe−θ pi, j

1 − e−θ pi, j
− θ

(
riA − j

diA
di

)

+ diB
di(1 − e−pi, j )

−
(
riB − j

diB
di

)
= 0. (16)

The estimating Equation (16) is a nonlinear function of pi, j,
and there is no closed-form solution. Therefore, we use a numer-
ical approach to solve for pi, j at ti, j; let p̃(θ ) denote the esti-
mated nuisance parameter matrix, where entry (i, j) is denoted
as p̃i, j,θ . Therefore, using Efron’s approach to extend RGLR for
tied event times, the RGLRE test statistic for the null hypothesis
H0 : θ = θ0 is

RGLRE[θ0, p̃(θ0)] =
∑k

i=1[diA − ĒiA(θ0, p̃i, j,θ0 )]2∑k
i=1 V̄iA(θ0, p̃i, j,θ0 )

. (17)



142 R. XU, P. A. SHAW, AND D. V. MEHROTRA

The reference distribution used for RGLRE is an
F-distribution with degrees of freedom 1 and k∗, where
k∗ = ∑

i min(di, ri − di, riA, riB). This is the same distribution
as that used for RGLR with no ties. Again, this approximation is
based on a conjecture that is strongly supported by simulations,
as shown later. Of note, RGLRE and RGLR are identical when
there are no tied event times.

3. Simulation Study

We first compared the performance of the RGLR statistic to the
Cox proportional hazards and parametric models, and to the
GLR approach when there are no tied observations. We carried
out a simulation study to examine issues of bias, efficiency, Type
I error and the nominal 95% confidence interval coverage. For
estimation with the parametric model, we examined estimation
under the true versus a misspecified distribution for the simu-
lated survival times.

For each of the NA and NB subjects in group A and B, inde-
pendent entry time ei j was generated from a uniform distri-
bution on (0, T), where i indicates subject and j = 1, 0 indi-
cates group A or B, respectively. Independent of the entry
time, survival time siA was generated from Weibull (rate=

0.5θ , shape=2), and siB was generated from Weibull (rate
= 0.5, shape = 2), so that the hazard ratio was θ . Note
that the probability density function of a Weibull distribu-
tion with shape parameter α and rate parameter λ is f (t ) =
αλtα−1 exp(−λtα ). The trial time for each subject was hence
ti j = min(si j,T − ei j).

We varied the sample size, percentage of censoring, and the
hazard ratio between the two groups to compare the perfor-
mance of the different methods. Sample size per group was var-
ied as NA = NB = 10, 20, 40, 100. We considered percentage of
censoring for the total sample of 0% and 50%. The percentage of
censoring was controlled by changing the final analysis time T.
For example, for 20 subjects per group with true log hazard ratio
of 0.6, with T = 2 the mean censoring was 50.7% and the aver-
age number of events was 20.3. The log hazard ratio, denoted by
ln(θ ), took values of 0, 0.6 and 1.2. Simulation results are based
on 5000 replications.

Given the small-sample sizes, a problem referred to as
“monotone likelihood” was encountered in some simulated
datasets, where the highest event time in one group precedes
the smallest event time in the other group (Bryson and John-
son 1981). Under this scenario, the hazard ratio estimate from
the Cox model is infinite and not reliable. Therefore, we deleted

Table . Empirical bias, percent ratio ofMSE relative to Coxmodel and coverage probability for %C.I. for ln(θ ) = 0, 0.6, 1.2based on  simulations and anunderlying
Weibull distribution for the survival times∗ .

ln(θ ) = 0 ln(θ ) = 0.6 ln(θ ) = 1.2

Censoring N Method Bias %RMSE Cov %Bias %RMSE Cov %Bias %RMSE Cov

%  Cox (Wald) − .  . .  . .  .
Cox (Score) − .  [.] .  [.] .  .
Weibull − .  [.] .  [.] .  [.]
GLR − .  . − .  . − .  [.]
RGLR − .  . .  . .  .

 Cox (Wald) .  . .  . .  .
Cox (Score) .  [.] .  [.] .  .
Weibull .  [.] .  [.] .  [.]
GLR .  . − .  [.] − .  [.]
RGLR .  . .  . .  .

 Cox (Wald) − .  . .  . .  .
Cox (Score) − .  . .  . .  .
Weibull − .  . .  . .  .
GLR − .  . − .  [.] − .  [.]
RGLR − .  . − .  . − .  .

 Cox (Wald) − .  . .  . .  .
Cox (Score) − .  . .  . .  .
Weibull − .  . .  . .  .
GLR − .  . − .  . − .  .
RGLR − .  . − .  . − .  .

%  Cox (Wald) − .  . .  . .  .
Cox (Score) − .  . .  [.] .  .
Weibull − .  [.] .  [.] .  .
GLR − .  . − .  . − .  .
RGLR − .  . .  . .  .

 Cox (Wald) − .  . .  . .  .
Cox (Score) − .  . .  . .  .
Weibull − .  . .  . .  .
GLR − .  . − .  . − .  .
RGLR − .  . − .  . − .  .

 Cox (Wald) .  . .  . .  .
Cox (Score) .  . .  . .  .
Weibull .  . .  . .  .
GLR .  . − .  . − .  .
RGLR .  . − .  . − .  .

∗ %RMSE = 100 × MSE of Cox/MSE of competing method. Results for  per group with % censoring are not reported due to monotone likelihood problems in more
than % of the simulated datasets. Coverage probability more than Z0.975 standard errors below % is in square brackets.N: sample size per group. Cov: coverage prob-
ability for % C.I. Cox (Wald): Cox proportional hazards model with Wald test. Cox (Score): Cox proportional hazards model with Score test. Weibull: Weibull regression.
GLR: Generalized log-rank approach. RGLR: Refined GLR approach.
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any simulated dataset in which this occurred, and if for a
set of parameters of interest, there were more than 1% simu-
lated datasets with a monotone likelihood, the results were not
reported. For this reason, results for 10 subjects per group are
not considered for scenarios with 50% censoring.

For each simulation scenario, we compare the empirical
bias, relative efficiency and the empirical coverage probability
for the 95% confidence interval for all scenarios considered
for the parametric (Weibull) regression model, Cox model,
GLR, and RGLR. The estimated log hazard ratio from fitting
the Weibull regression is estimated by dividing the negative
of the coefficient for the covariate Z, the group indicator,
by the estimated scale parameter. The estimated log hazard
ratio from the Cox model is the estimated coefficient for Z.
Bias was reported for the case of ln(θ ) = 0 and percentage bias,
defined as 100 times the ratio of bias to the true value, was
reported for ln(θ ) = 0.6 and 1.2. The relative efficiency was

calculated as the ratio of the MSE of the Cox model estimator
and the estimator of the given competing method, that is,
%RMSE = 100 × MSE of Cox/MSE of the competing method.
Accordingly, %RMSE>100% indicates that the target method is
more efficient than the Cox model.

3.1. Results on EstimationWithout Tied Event Times

Per the results shown in Table 1, the RGLR statistic always had
the smallest bias among the four methods and provided higher
efficiency relative to the Cox model, even with 100 subjects per
group. Compared to the parametric model, RGLR still had a
higher relative efficiency in small samples (fewer than 20 sub-
jects per group under 0% censoring and fewer than 40 subjects
per group under 50% censoring). While GLR had the highest
relative efficiency under small samples, it had a bigger bias than

Table . Empirical bias, percent ratio ofMSE relative to Coxmodel and coverageprobability for %C.I. for ln(θ ) = 0, 0.6, 1.2basedon  simulations and anunderlying
Gompertz distribution for the survival times∗ .

ln(θ ) = 0 ln(θ ) = 0.6 ln(θ ) = 1.2

Censoring N Method Bias %RMSE Cov %Bias %RMSE Cov %Bias %RMSE Cov

%  Cox (Wald) − .  [.] .  . .  .
Cox (Score) − .  [.] .  [.] .  .
Gompertz .  [.] .  [.] .  [.]
Exp − .  . − .  . − .  [.]
Weibull .  . − .  . − .  .
GLR .  . − .  . − .  [.]
RGLR .  . .  . .  .

 Cox (Wald) .  . .  . .  .
Cox (Score) .  [.] .  . .  .
Gompertz .  [.] .  [.] .  .
Exp .  . − .  . − .  [.]
Weibull .  . − .  . − .  [.]
GLR .  . − .  . − .  [.]
RGLR .  . .  . .  .

 Cox (Wald) .  . .  . .  .
Cox (Score) .  . .  . .  .
Gompertz .  . .  . .  .
Exp .  . − .  [.] − .  [.]
Weibull .  . − .  [.] − .  [.]
GLR .  . − .  . − .  .
RGLR .  . − .  . .  .

%  Cox (Wald) .  . .  . .  .
Cox (Score) .  . .  . .  .
Gompertz .  . .  . .  .
Exp .  . − .  . − .  .
Weibull .  . .  . .  .
GLR .  . − .  . − .  .
RGLR .  . .  . .  .

 Cox (Wald) − .  . .  . .  .
Cox (Score) − .  . .  . .  .
Gompertz − .  . .  . .  .
Exp − .  . − .  . − .  [.]
Weibull − .  . − .  . − .  .
GLR − .  . − .  . − .  .
RGLR − .  . − .  . − .  .

 Cox (Wald) .  . .  . .  .
Cox (Score) .  . .  . .  .
Gompertz .  . .  . .  .
Exp .  . − .  . − .  [.]
Weibull .  . − .  . − .  .
GLR .  . − .  . − .  .
RGLR .  . − .  . − .  .

∗ %RMSE = 100 × MSE of Cox/MSE of competing method. Results for  per group with % censoring are not reported due to monotone likelihood problems in more
than % of the simulated datasets. Coverage probability more than Z0.975 standard errors below % is in square brackets. N: sample size per group. Cov: coverage
probability for % C.I. Cox (Wald): Cox proportional hazards model withWald test. Cox (Score): Cox proportional hazards model with Score test. Weibull: Weibull regres-
sion. GLR: Generalized log-rank approach. RGLR: Refined GLR approach.
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Figure . Empirical densities of estimators from the Gompertz, exponential, and Weibull parametric survival models, Cox model, generalized log-rank (GLR) and refined
GLR (RGLR) ( simulations for  subjects per group with % censoring and an underlying Gompertz distribution) with a true hazard ratio of (a) , (b) ., and (c) ..
A vertical line is drawn at the true hazard ratio.

RGLR and failed to maintain the nominal 95% coverage rate in
some scenarios, which will be further discussed in Section 3.2.
It should also be noted that the results of the parametric method
are based on the true distribution. For real-data examples, it is
quite difficult tomake a correct assumption about the true distri-
bution when sample size is small. When a wrong distribution is
assumed, we would expect the parametric method to perform
worse. Thus, the parametric method carries the risk of mak-
ing the wrong assumption for the true distribution, whereas the
RGLRmethod does not require any knowledge about the under-
lying distribution. We will examine the impact of misspecifica-
tion of the survival distribution in Section 3.3.

3.2. Results on 95%C.I. Coveragewithout Tied Event Times

Table 1 also reports the empirical coverage probability for the
95% confidence interval (C.I.). Note that under the null hypoth-
esis ofH0 : ln(θ ) = 0, that is, the hazard ratio is 1, and for a two-
tailed 5% significance level, 100 minus the coverage probability
is equal to the Type I error rate. Therefore, a coverage probabil-
ity below 95% under the null indicates an inflated Type I error.
In Table 1, a value in square brackets indicates that the cover-
age probability is more than Z0.975 standard errors less than the
nominal rate of 95%, which implies that the Type I error rate is
more than Z0.975 standard errors above the nominal rate of 5%.

We performed a Wald test for the estimated θ using paramet-
ric (Weibull) regression and bothWald and Score tests using the
Coxmodel.When sample sizewas 10 and 20 per group, theWald
test fromWeibull regression and Cox Score and Cox Wald tests
tended to provide an inflated Type I error rate, while our RGLR
statistic controlled the Type I error rate under 5%. RGLR con-
sistently maintained at least 95% coverage rate across all sim-
ulated scenarios. In contrast, GLR, Cox and parametric model
failed to maintain the 95% coverage rate when sample size was
small.

3.3. Misspecification of the Failure TimeDistribution
(No Tied Event Times)

Asmentioned earlier, it is not always possible to assume the cor-
rect distribution when using a given parametric approach in a
real-data situation. When a wrong parametric model is fit to the
data, we would expect the resulting estimator to be biased. On
the other hand, the RGLR approach does not make any assump-
tion about the underlying survival distribution.We carried out a
simulation study on the effect ofmisspecification, where the data
were generated from aGompertz distribution. The survival time
in group A was generated from a Gompertz(shape = 0.5, rate
= 0.2θ), and the survival time in group B was generated from a
Gompertz(shape= 0.5, rate= 0.2), so that proportional hazards
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Table . Empirical bias, percent ratio ofMSE relative to Coxmodel and coverageprobability for %C.I. for ln(θ ) = 0, 0.6, 1.2basedon  simulations and anunderlying
Weibull distribution for the survival times with tied observations∗ .

ln(θ ) = 0 ln(θ ) = 0.6 ln(θ ) = 1.2

Censoring N Method Bias %RMSE Cov %Bias %RMSE Cov %Bias %RMSE Cov

%  CoxE (Wald) − .  . .  . .  .
CoxE (Score) − .  [.] .  [.] .  .
Weibull − .  [.] .  [.] .  [.]
GLRE − .  . − .  . − .  [.]
RGLRE − .  . − .  . − .  .

 CoxE (Wald) .  . .  . .  .
CoxE (Score) .  [.] .  [.] .  .
Weibull .  [.] .  [.] .  [.]
GLRE .  . − .  [.] − .  [.]
RGLRE .  . − .  . − .  .

 CoxE (Wald) − .  . .  . .  .
CoxE (Score) − .  . .  . .  .
Weibull − .  . .  . .  .
GLRE − .  . − .  . − .  .
RGLRE − .  . − .  . − .  .

%  CoxE (Wald) − .  . .  . .  .
CoxE (Score) − .  . .  . .  .
Weibull − .  [.] .  [.] .  .
GLRE − .  . − .  . − .  .
RGLRE − .  . − .  . − .  .

 CoxE (Wald) − .  . .  . .  .
CoxE (Score) − .  . .  . .  .
Weibull − .  . .  . .  .
GLRE − .  . − .  . − .  .
RGLRE − .  . − .  . − .  .

 CoxE (Wald) .  . .  . .  .
CoxE (Score) .  . .  . .  .
Weibull .  . .  . .  .
GLRE .  . − .  . − .  .
RGLRE .  . − .  . − .  .

∗ %RMSE = 100 × MSE of Cox/MSE of competing method. Results for  per group with % censoring are not reported due to monotone likelihood problems in more
than % of the simulated datasets. Coverage probability more than Z0.975 standard errors below % is in square brackets. N: sample size per group. Cov: coverage
probability for % C.I. CoxE (Wald): Cox proportional hazards model using Efron’s method for ties with Wald test. CoxE (Score): Cox proportional hazards model using
Efron’s method for ties with Score test. Weibull: Weibull regression. GLRE : Generalized log-rank approach using Efron’s method for ties. RGLRE : Refined GLR approach
using Efron’s method for ties.

still holds with hazard ratio θ . Each subject also had an indepen-
dent entry time, and the trial was administratively censored by
a fixed time T .

We again considered three different values for the log haz-
ard ratio: ln(θ ) = 0, 0.6, 1.2, percentage censoring of 0% and
50%, and varied the number of subjects per group as 10, 20,
40, 100. For each simulation, we fit the exponential, Weibull
and Cox models, and applied the GLR and RGLR methods.
Figure A.1 in the supplementary material shows the differ-
ent hazard functions from Gompertz, Weibull, and exponential
distributions.

When Gompertz was the true distribution, fitting exponen-
tial andWeibull regression under 0% censoring resulted in large
bias and lowpercent RMSEwhen ln(θ ) > 0, as shown inTable 2.
The percentage bias from fitting exponential regression was as
large as 40%, and its percent RMSE ranged from 14% to 210%.
However, with a percentage bias around 30–40%, the high per-
cent RMSE is largely meaningless. On the other hand, when
the log hazard ratio was 0, exponential regression had a very
small absolute bias and a high percent RMSE. However, given its
poor performance in the case of non-zero log hazard ratio, this
behavior indicates a tendency toward attenuation bias. Li, Klein,
andMoeschberger (1996) examined the behavior of exponential
regression under misspecification in the context of hypothesis

testing, and found that exponential regression notably underes-
timates the nominal 5% alpha level when the true distribution is
Gompertz and substantially overestimates when the hazard rate
is decreasing. This is consistent with our finding that the expo-
nential model performed poorly for nonzero log hazard ratio
scenarios. Weibull regression, although more stable than expo-
nential regression, still resulted in a bias of 10% or more when
the sample size was at least 20 subjects per group under 0% cen-
soring. It also started to lose efficiency as sample size increased,
for example, with %RMSE=63% when ln(θ ) = 1.2 under 0%
censoring.

Compared to the parametric approach, the Cox model, GLR
and RGLR approaches are not subject to misspecification of
the underlying distribution and thus provided much more sta-
ble results. The bias of the RGLR approach was the small-
est across all the simulated scenarios, and it also delivered
a higher relative efficiency than the Cox model and Gom-
pertz model when there were fewer than 100 subjects per
group.

When percentage censoring increased to 50%, all methods
performed better thanwith 0% censoring. This could be because
some extreme values were censored under 50% censoring. How-
ever, exponential andWeibull regression were still the least ideal
approaches. RGLR, on the other hand, consistently showed the
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Figure . (a) Kaplan–Meier curves for time to death for patients with (a) squamous cell, (b) large cell, (c) adenoma cell, and (d) small cell lung cancer by treatment group.
Data from Kalbfleisch and Prentice ().

lowest bias and high relative efficiency relative to the Cox and
Gompertz models.

As shown in Table 2 and mentioned earlier, the exponen-
tial model underestimated Type I error and had poor coverage.
The Cox model, especially using the score test, and GLR tended
to provide a slightly lower coverage than desired. On the other
hand, the RGLR approach is more stable and was able to main-
tain at least 95% coverage.

Figures 1(a)–(c) show the empirical densities of the estima-
tors from the different methods with an underlying Gompertz
distribution and 0% censoring and 20 subjects per group for
ln(θ ) = 0, 0.6, and 1.2, respectively. The vertical line is drawn
at the true hazard ratio. As noted in the simulation results, in all
three cases, the exponential model was adversely impacted by
misspecification of the underlying true distribution. The RGLR
estimates centeredmore closely around the true value than those
from the Cox model.

3.4. Simulation Results with Tied Event Times

To compare the performance of RGLRE to competing methods
when ties in the event times are present, we again generated the
data from aWeibull distribution. The set up was the same as the
scenario with no tied observations, where survival time in group
A was fromWeibull (rate = 0.5θ , shape = 2), and survival time
in group B was fromWeibull (rate = 0.5, shape = 2). Ties were

created by rounding the event times to one digit after the decimal
place, which is equivalent to rounding to the nearest month if
the trial time unit is in years. There were approximately 15–20%
tied event times, calculated as the percentage of nonunique event
times in group A and B, in the the simulation studies. We com-
pared the proposed RGLR extension for ties, RGLRE , Weibull
regression, Coxmodel, andGLR extension for ties, the latter two
using Efron’s approximation. The pattern of simulation results
are very similar to that under no ties, and results are reported in
Table 3.

When ties were present, with small-sample sizes, RGLRE still
delivered the smallest bias among all the methods considered,
and provided higher efficiency than both Coxmodel that adjusts
for ties using Efron’s approximation and Weibull regression. It
also controlled Type I error and maintained at least 95% cover-
age rate, while both the Cox andWeibull models tended to have
inflated Type I error under small samples; of note, GLRE failed
to deliver adequate 95% confidence interval coverage in some
cases.

4. Application to Two Real Datasets

We apply the RGLR and other competing methods to data
from two clinical trials involving lung cancer (Kalbfleisch and
Prentice 1980) and bladder cancer (Pagano and Gauvreau
2000).
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Figure . (a) Estimated hazard ratio and % confidence interval comparing test to standard chemotherapy for patients with (a) squamous cell (b) large cell (c) adenoma
cell and (d) small cell lung cancer using four different methods. Cox: Cox regression. Weibull: Weibull regression. GLR: Generalized log-rank approach. RGLR: Refined GLR
approach. CoxE : Cox regression using Efron’s method to adjust for tied events. Weibull: Weibull regression. GLRE : Generalized log-rank approach using Efron’s method to
adjust for tied events. RGLRE : Refined GLR approach using Efron’s method to adjust for tied events. Data from Kalbfleisch and Prentice ().

4.1. Lung Cancer Clinical Trial

Kalbfleisch and Prentice (1980) reported results for a lung can-
cer trial with 137 male patients. There were 69 patients ran-
domized patients to a standard chemotherapy and 68 patients
to a test chemotherapy. Patients were categorized into four
histological tumor types: squamous, small cell, adenoma, and
large cell. The outcome variable was time to death (in days).
Kaplan–Meier curves comparing patients on standard and
test chemotherapy with different cell types are presented in
Figure 2.

There were no tied event times in the large cell group, so
we applied Weibull regression, Cox model, GLR and RGLR.
The remaining groups all had some tied event times; there-
fore, we applied Weibull regression, Cox model with Efron’s
approximation for ties, GLRE , RGLRE . For patients with large
cell group, GLR and RGLR provided a smaller estimated hazard
ratio (test/standard) and narrower 95% C.I. than Weibull and
Cox model, as shown in Figure 3(b). The estimated hazard ratio
(95% C.I.) was 1.64 (0.76, 3.55) using Weibull regression, 1.54
(0.69, 3.41) using Cox regression, 1.44 (0.71, 2.96) using GLR
and 1.49 (0.69, 3.22) using RGLR. For patients with squamous,
adenoma, and small cell types, Weibull, Cox model with Efron’s
approximation, GLRE and RGLRE provided similar results, as

shown in Figures 3(a), (c), and (d). The true hazard ratio is
unknown in a real-data example, but based on our simulation
results, the RGLR approach has the smallest bias and maintains
coverage for 95% C.I. in small samples, and thus, is expected to
be closer to the truth.

4.2. Bladder Cancer Clinical Trial

Pagano and Gauvreau (2000) reported results for a bladder can-
cer clinical trial. The study included 86 patients in total, who
were assigned to either placebo or chemotherapy (Thiotepa)
after surgery. The outcome of interest was time to recurrence
(in months). For illustration, we further divided the subjects
into two groups according to the number of tumors removed
at surgery, one or multiple, and assessed the treatment effect.
Among patients with one tumor removed, 26 patients were on
placebo and 23were on chemotherapy.Among thosewithmulti-
ple tumors removed, 22 patients were on placebo and 15were on
chemotherapy. Figures 4(a) and (b) present the Kaplan–Meier
curves comparing patients on placebo and chemotherapy with
one or multiple tumors removed.

Because of the tied event times in the dataset, in addition to
Weibull regression, we used Cox model with Efron’s approxi-
mation for ties, GLRE and RGLRE . The four methods provided
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Figure . Kaplan–Meier survival curves for time to recurrence for bladder cancer patients with (a) one tumor and (b) multiple tumors removed at surgery by treatment
group. Estimated hazard ratio and % confidence interval comparing placebo to chemotherapy for bladder cancer patients with (c) one tumor and (d) multiple tumors
removed at surgery using four different methods. CoxE : Cox regression using Efron’s method to adjust for tied events. Weibull: Weibull regression. GLRE : Generalized log-
rank approach using Efron’s method to adjust for tied events. RGLRE : Refined GLR approach using Efron’s method to adjust for tied events. Data from Pagano and Gauvreau
().

similar results among patients with one tumor removed, but
quite different results for those with multiple tumors removed.
For patients with only one tumor removed, the estimated hazard
ratio (95% C.I.) of recurrence (placebo/chemotherapy) was 1.28
(0.62, 2.66) using Weibull regression, 1.28 (0.61, 2.69) using
the Cox model with Efron’s approximation, 1.27 (0.61, 2.63)
using GLRE and 1.27 (0.61, 2.68) using RGLRE . For those with
multiple tumors removed, the corresponding results were 2.37
(0.84, 6.70) usingWeibull regression, 1.96 (0.70, 5.51) using Cox
model with Efron’s approximation, 3.50 (1.27, 9.85) using GLRE

and 3.60 (1.27, 10.25) using RGLRE . As shown in Figure 4(d),
both GLRE and RGLRE provided statistical evidence of a treat-
ment difference based on the C.I. excluding one, while Weibull
regression and Cox model with Efron’s approximation for ties
did not.

While Weibull and Cox regressions generated a narrower
confidence interval, both of the methods tend to have inflated
Type I error and lower coverage probability for 95%C.I. in small
samples, as shown in our simulation studies (Section 3). There-
fore, our numerical results suggest RGLRE is expected to be
closer to the truth in this example.

Of note, in both real-data examples, the estimated HR
for GLR and GLRE was always closer to one than that for
RGLR and RGLRE . This is consistent with the simulation
results in Section 3 which showed that GLR and GLRE tend to
underestimate true hazard ratios that are greater than one (and,

by analogy, overestimate true hazard ratios that are less than
one).

5. Conclusions

Small-sample studies of time-to-event outcomes are quite com-
mon in early-phase clinical trials and observational studies of
rare diseases. Thus, it is important to have methods that pro-
vide efficient hazard ratio estimation, control Type I error and
maintain confidence interval coverage in small-sample settings.
In this research, we developed the RGLR statistic and extended
themethod to allow for ties. RGLR reduces bias while maintain-
ing high relative efficiency versus the Cox model by eliminat-
ing an unnecessary approximation in the GLR statistic. We also
provided a more intuitive development using inverse-variance
weighting to estimate the nuisance parameters for GLR. In addi-
tion, we demonstrated control of Type I error rate and 95% C.I.
coverage in small samples for RGLR and explored the effect of
misspecification of the underlying distribution on parametric
models. Through simulation studies, we showed that the RGLR
approach provides smaller bias relative toGLR aswell as the Cox
and true parametric models when the sample size per group is
around 40 or less and comparable performance for larger sam-
ples. RGLR was able to consistently keep the Type I error at or
below the 5% nominal level in extensive simulations, while the
parametric and Cox models were observed to have an inflated
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Type I error rate in small samples. Furthermore, in real-data
applications, it is often challenging to know the true underly-
ing distribution. We illustrated through simulations that when
an incorrect distribution is used by a parametric regression, it
can result in large bias for the estimated hazard ratio. On the
other hand, the RGLR approach does not require any assump-
tion about the true distribution and consistently delivers a very
low bias with better efficiency relative to the Cox model. We
recommend the use of RGLR in the setting of two-group com-
parisons with survival outcomes in small samples over the com-
monly used Cox and parametric models.

SupplementaryMaterial

Appendix A and B: The supplementary material contains two
parts. Appendix A has details showing two approaches for
estimating the nuisance parameters for the RGLR statis-
tic, and Appendix B includes a figure showing the different
shapes of hazard functions of Gompertz, Weibull, and Expo-
nential distributions. (PDF file)
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