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The stratified Cox model is commonly used for stratified clinical trials with
time-to-event endpoints. The estimated log hazard ratio is approximately a
weighted average of corresponding stratum-specific Cox model estimates using
inverse-variance weights; the latter are optimal only under the (often implausi-
ble) assumption of a constant hazard ratio across strata. Focusing on trials with
limited sample sizes (50-200 subjects per treatment), we propose an alternative
approach in which stratum-specific estimates are obtained using a refined gen-
eralized logrank (RGLR) approach and then combined using either sample size
or minimum risk weights for overall inference. Our proposal extends the work
of Mehrotra et al, to incorporate the RGLR statistic, which outperforms the Cox

model in the setting of proportional hazards and small samples. This work also
entails development of a remarkably accurate plug-in formula for the variance
of RGLR-based estimated log hazard ratios. We demonstrate using simulations
that our proposed two-step RGLR analysis delivers notably better results through
smaller estimation bias and mean squared error and larger power than the strat-
ified Cox model analysis when there is a treatment-by-stratum interaction, with
similar performance when there is no interaction. Additionally, our method
controls the type I error rate while the stratified Cox model does not in small
samples. We illustrate our method using data from a clinical trial comparing two
treatments for colon cancer.
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1 | INTRODUCTION

In randomized clinical trials with a time-to-event endpoint, it is important to incorporate stratification when the risk
of having the event of interest is expected to be influenced by one or more prognostic factors, such as gender, baseline
disease severity, specific genetic mutation (eg, HER2 positivity in breast cancer), and so on. Several studies have shown
that omitting important covariates from the analysis model can lead to potentially spurious results.'” For example, Schu-
macher et al* showed that the estimated hazard ratio is attenuated if a prognostic factor is omitted, and this result is also
confirmed by Bretagnolle and Huber-Carol.> A commonly used approach for analyzing stratified trials with time-to-event
outcomes is the stratified Cox proportional hazard model,® which makes the assumption of proportional hazards within
each stratum. It also imposes an additional assumption that the hazard ratio is exactly the same across all strata, which
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seems implausible in many practical settings. When there is a treatment by stratum interaction, ie, the hazard ratio differs
by stratum, using the conventional stratified Cox model analysis can lead to a biased and/or less efficient result.

To ensure unbiased and efficient results even when there exists a treatment by stratum interaction, Mehrotra et al’
proposed a two-step approach to allow for different hazard ratios across strata. Their procedure entails fitting a Cox model
separately for each stratum and then combining the stratum-specific log hazard ratio estimates to obtain an estimate of
the overall log hazard ratio; the latter is defined later in this article and is presumed to be the parameter of interest. They
considered two weighting schemes: sample size (SS) weights and minimum risk (MR) weights?®; both of these are described
in the next section. The Mehrotra et al’ two-step method was developed for large sample applications, as endorsed by
Beisel et al® based on extensive simulations; however, many randomized clinical trials involve relatively small samples
(50-200 patients per treatment group).!? In the study of Xu et al,'! we developed a method for improving hazard ratio
estimation using a refined generalized logrank (RGLR) statistic for small randomized clinical trials without stratification,
and showed that it provides higher efficiency and smaller bias than the Cox proportional hazards model analysis. In this
article, we extend the RGLR method to handle stratification and explore its performance in small samples. An additional
contribution is the theoretical development of a (remarkably accurate) approximation for the variance of the RGLR-based
estimate of a log hazard ratio. Section 2 includes details of the two-step RGLR approach for both the SS and MR weighting
schemes. In Section 3, we explore the relative performance of the competing methods, namely, the conventional stratified
Cox model analysis and the corresponding two-step Cox model and two-step RGLR analyses, through simulations. We
then apply the methods to a real data example from a colon cancer clinical trial in Section 4. Section 5 includes concluding
remarks.

2 | METHODS

Suppose there are S strata and within stratum i, where i = 1,2, ..., S; we randomize n;4 and n;g subjects to treat-
ment A and B, respectively; by design, the ratio n;4 /n;p is kept constant across strata. Denote the total SS in stratum i as
n; = nja + njp and total SSas n = Zle n;. Within stratum i, let f;; < £ < ... < fy, denote the ordered observed
event times for the combined group across treatments. Let f; = log[h;4(t)/his(¢)] denote the true time-invariant log haz-
ard ratio in stratum i with 8; = exp(f};) representing the corresponding true hazard ratio and hi4(t), h;p(t) representing
the hazard rate in treatment A and B, respectively. If there is no treatment by stratum interaction, ie, if §; = g for all
i, there is no ambiguity about the definition of the overall log hazard ratio. However, in the presence of an interaction,
ie, if B; # B, for at least one i and i*, it is natural to define the target parameter as a population weighted mean of the
Bi's, ie, f = Eiszl fiBi , where f; is the fraction of subjects in the target population that belong to stratum i (Zle fi=1).
The overall hazard ratio is defined as @yyerar = exp(f). Some readers may choose to define the true overall hazard ratio
as the weighted arithmetic mean of the true stratum-specific hazard ratios. Our preferred choice essentially replaces
the arithmetic mean with the geometric mean in such a construct. We do this based on the simple observation that the
geometric mean of {h;4(t)/hip(t);i = 1,2, ..., S} always equals the geometric mean of {hj4(¢);i = 1,2, ..., S} divided
by the geometric mean of {h;z(¢);i = 1,2, ...,S}. This appealing feature is lost if the arithmetic mean is used instead.
Nevertheless, we stress that the two-step estimation approach described later in this article has the flexibility to accom-
modate both definitions of the true overall hazard ratio. Moreover, there is no requirement for the true stratum-specific
hazard ratios to be equal under either definition. We acknowledge that while this is true for the definition of the true
overall hazard ratio, its interpretation can be challenging if the true stratum-specific hazard ratios are considerably
different.

The conventional stratified Cox model analysis assumes no treatment by stratum interaction, and this can (and often
does) result in a biased estimate of , for reasons articulated in Mehrotra et al’ To allow for a potential treatment by stratum
interaction, we propose to use RGLR to estimate the log hazard ratio in each stratum and combine the stratum-specific
point estimates using a weighted average to estimate the overall log hazard ratio:

A

p=,

v

s
WiB:. (2.1)
=1
Following Mehrotra et al,” we consider two weighting schemes: SS and MR. Sample size weighting uses the SS in each
stratum relative to the whole sample as the weight, ie, Vviss = n;/n; we assume that n;/n ~ f;. While SS weighting provides
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an unbiased estimator of §, it can suffer from a needlessly large variance. The MR weights proposed by Mehrotra and
Railkar® in a different context are intended to minimize mean squared error (MSE); for our stratified time-to-event setting,
the weights are calculated as follows:

S A
. bV.‘l __pia;
WMR = 4 Zl:l ’ (2.2)

BN AR WL AR WU

where b; = f; Zle v Zle ﬁif/i_l’ a =V +b Ele fini/n), and V; is the estimated variance for f;. Of note, when
the log hazard ratios are approximately the same across all strata, it is easily seen that W?”R ~ I7i‘1, which is intuitively
appealing because the latter weights are optimal (and very similar to the weights used implicitly by the stratified Cox
model) when there is no treatment by stratum interaction; see Mehrotra et al.”

To implement Equation 2.2, we need to derive the variance of the stratum-specific RGLR estimate of the log hazard ratio.
Details of the RGLR definition and derivation can be found in our previous work."! We will provide the basic set up of
RGLR here. Consider the scenario of single stratum, ie, S = 1. Let T denote the random variable for the event time. Then,
by definition, we have P(t;;_; < T < t;;|T > t;;—1) = 1 — exp(—p;;), Where p;; = fttjil hig(x)dx, and h;p(t) is the hazard
function for group B for stratum i. Let random variables D; j4 and D; jz denote the number of events at time £;; in group A
and B, respectively, and let D;; = D;ja + D;;g. Let random variables R; ;4 and R;j denote the number of subjects at risk
at time f;; in group A and B, respectively, and 7; 4, r; jg denote the corresponding observed number of subjects. Under the
assumption of no tied event times, given d;j, i 4, 1B, Dij» Bis Dija follows a noncentral hypergeometric distribution with
probability 1 — exp(—e”ip; ;) and R;j4 number of trials. The conditional mean and variance of D; j4 can then be derived as
follows:

—p. .efi\ —p: .
ri,jA(l —e Di ;€ )e Dij
LjA —D; ebi —D; —Di i \p—Di ebi (23)
l"l'JA(l —e Fij )e i 4 Vi’jB(l —e w)e L

rija(l— e Pise YePuir; jp(1 — e—Pi_/)e_Pivjeﬁi
Vija = n G (2.4)
[rija(l — P )e™Pi + 1 jp(1 — e7Pir)e™Pis®" ]2

We showed in Xu et al'! that the nuisance parameter can be estimated using an unconditional approach, where

A+Rl/B —_ . —
i log <9R1,A+RI,B—1 ) when d;j4 =0,d;jp=1

pi,j = o0R (25)
ijatRijB L o
log <W) , when dl’JA = l,de =0.

Let p; denote the estimated nuisance parameter vector and define S;x(f;, Pi) = Zf=1(di, ja — Eija) and Ly (i, Pi) =

Zle Vi ja. Note that E[S;x(f;, Pi)] = 0, and therefore, we can estimate the log hazard ratio f; by solving the moment

equation S;x(f;, B;) = 0. Denote the moment log hazard ratio estimator by fR?*R. Then, by the first order Taylor expansion,
we have

5 Sise(Bi> Pi)
ﬂiRGLR Bz — :35 k(; p)l i (2.6)
9p;
where
k -4
05, k(ﬂ,P) pijele P
i.k(Di, Pi Z — Vija. 2.7)
e P
As SS gets large, p;; — 0, and by L'Hopital's rule, we have that lim,, Lo 2f ep -— = 1. Thus,
J 1_ePijet
k
_ 05 k(ﬂ,p)
- SLa = 2 i,jA = lk(ﬁupl) (2-8)
Jj=1

Combining Equations 2.6 and 2.8 gives us

— . Sik(Bi, i)
VI (B PBROR — ) = ————. (2.9)
Vi (Bi, Pi)
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Since S; x(f;, pi) converges to the Cox partial likelihood score function as n — oo, and P; goes to 0, an argument similar
to that in Andersen and Gill*? can be applied to show asymptotic normality of the RGLR estimator for f;. Specifically, by

the Martingale Central Limit Theorem,
Six(Pi,Pi) D

— —N(0,1). (2.10)
V3ik(Bis Pi)
Therefore, denoting Vi(ﬂAiRGLR, P = Ii‘kl(ﬁfGLR, Pi) and combining Equations 2.9 and 2.10, we have
o — g
L

A/ Vi(BROIR By)

. JRGIR - . _ jRGLR
k ri,jA (1 — e D¢ )e—Pi., ri,jB(l — e_pi.j)e_pi,Je

D
SN(O, 1), (2.11)

where .

Vi(BRIR py) ~ (2.12)

= _ JRGLR . . . RGLR 2
ri, jA<1 —e Pt )e‘Pi-/ + 1, jg(1 — e7Pii)e Pii®"

With the approximate variance formula now established for the RGLR estimator in each stratum, we can now calculate

the MR weights using Equation 2.2. For both weighting schemes, we do hypothesis testing (Hy : f = 0vs H; : f§ # 0)
ARGLR N

using f# , the weighted average of the S independent stratum-specific estimates 4“*

sRGLR
approximate variance of is calculated as follows:

V(ﬁf_\RGLR) _

Confidence interval (CI) calculations can be done using Wald tests implied by Equation 2.11. A numerical study demon-
strating the impressive accuracy of the variance Formulas 2.12 and 2.13 is provided in the Supporting Information. It
is important to note that Equation 2.13 ignores the variability in the estimated weights. As such, strictly speaking, the
corresponding inference should be treated as being approximate. Fortunately, as seen later in our simulation results, the
approximation is good enough to deliver excellent type 1 error rate and confidence interval coverage properties across
a range of realistic scenarios. Researchers who prefer a closer-to-exact inference option can replace use of the approxi-
mate variance in Equation 2.13 with a corresponding variance obtained from a standard nonparametric bootstrap (details
omitted).

, as shown in Equation 2.1. The

™

Il
—

W2Vi(BROR, by). (2.13)

3 | SIMULATIONS

3.1 | Simulation setup

We performed a simulation study to examine the bias, relative efficiency and nominal 95% CI coverage probability of the
two-step RGLR using SS weights and MR weights and compared the performance of our proposed methods to the conven-
tional stratified Cox proportional hazards analysis and the two-step method of Mehrotra et al” in which stratum-specific
Cox model estimates are combined using SS weights or MR weights.

We considered the case of two strata and four strata in the simulation study. Usually, in the presence of stratification,
only the total number of subjects per group and randomization ratio (= 1 here) is fixed by design. Therefore, we used
a similar simulation setup as Mehrotra and Railkar® and treated the number of subjects in each stratum as a random
variable. Specifically, n pairs of subjects were first assigned to stratum i with probability f; (3 f; = 1), where i = 1,2 for
two strata and i = 1, 2, 3,4 for four strata, and then, within each pair, one subject was randomly assigned to treatment A
and the other to treatment B with equal probability. Thereafter, for subject j in stratum i and randomized to treatment gq
(g =A or B), we generated an entry time e;; from a uniform distribution (0, T). For two strata, survival times s, for subject
Jj under treatment A and treatment B in stratum i were generated from Weibull (scale= 4;/ \/E, shape = 2) and Weibull
(scale = 4;, shape = 2) respectively, where 4, = 0.6,4, = 1.2. Note that the hazard function for Weibull (scale = 4,
shape = y) is yx” =1/ A?, so the hazard ratio of treatment A relative to B in stratum i is ;. The follow-up time for a subject
Jrandomized to treatment g in stratum i was t;;q = min(sjq, T — €jq).
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TABLE 1 True log hazard ratio in each stratum and overall under the null and alternative hypotheses

Two Strata
Scenario 1: Equal stratum sizes

Stratum Relative frequency Null (no interaction) Alternative 1 (no interaction) Alternative 2 (interaction)

1 0.5 0 -0.7 -0.2
2 0.5 0 -0.7 -1.2
Overall 0 -0.7 -0.7

Scenario 2: Unequal stratum sizes

Stratum Relative frequency Null (no interaction) Alternative 1 (no interaction) Alternative 2 (interaction)

1 0.7 0 -0.7 -0.4
2 0.3 0 -0.7 -1.4
Overall 0 -0.7 -0.7

Four Strata
Scenario 1: Equal stratum sizes

Stratum Relative frequency Null (no interaction) Alternative 1 (no interaction) Alternative 2 (interaction)

1 0.25 0 -0.7 -0.3
2 0.25 0 -0.7 -0.4
3 0.25 0 -0.7 -0.8
4 0.25 0 -0.7 -1.3
Overall 0 -0.7 -0.7

Scenario 2: Unequal stratum sizes
Stratum Relative frequency Null (no interaction) Alternative 1 (no interaction) Alternative 2 (interaction)

1 0.15 0 -0.7 -0.3
2 0.35 0 -0.7 -0.4
3 0.35 0 -0.7 -0.8
4 0.15 0 -0.7 -1.65
Overall 0 -0.7 -0.7

Under all the alternative hypotheses for both two strata and four strata, the overall log hazard ratio § is fixed at -0.7.

For four strata, we used the same procedure for generating number of subjects per stratum, entry time, and survival
time as described above for the two strata simulations. Survival time sy, for subject j in stratum i under treatment A and
B was generated from Weibull (scale = 4;/ \/E, shape = 2) and Weibull (scale = 4;, shape = 2), respectively, where now
with /11 = 0.6, /12 = 08, /13 = 1, and /14 = 1.2.

We varied the stratum-specific relative frequency and true log hazard ratio, along with total SS and overall percentage
censoring. Both equal (scenario 1) and unequal (scenario 2) stratum sizes were considered. For two strata, we set f; =
f, = 05andf; = 0.7,f, = 0.3 for scenarios 1 and 2, respectively. For four strata, we setf, = f, = f; = f, = 0.25and
fi = 0.15,f, = 0.35,f; = 0.35,f, = 0.15 for scenarios 1 and 2, respectively. Under the null hypothesis, stratum-specific
and overall log hazard ratio were 0 in all cases. Under the alternative hypothesis, we considered two settings: the same
log hazard ratio across strata (Alt 1) and different log hazard ratios across strata (Alt 2). The stratum-specific log hazard
ratios in each scenario are summarized in Table 1; of note, the overall log hazard ratio (B) was fixed at -0.7 in every case,
which corresponds to an overall hazard ratio of exp(—0.7) = 0.5. Subjects per treatment group was varied as 50, 100 for
two strata, and 100, 200 for four strata. Two percentage censoring values were considered, both controlled by selecting a
specific T conditional on the fixed g;'s for the given scenario: 25% and 50%. 5000 replications were generated. Hypothesis
testing was done at the « = 0.05 level. Results for bias (under the null hypothesis), percent bias (under the alternative
hypothesis), type I error rate, power, relative efficiency, and coverage probability for the 95% CI for two and four strata
were obtained. Here, relative efficiency refers to 100 times the ratio of the MSE) for the estimator of # using the stratified
Cox model relative to that using the given alternative method of estimation. Thus, relative efficiency greater than 100%
represents an improvement over the stratified Cox model.

3.2 | Simulation results

Table 2 shows the results for the two strata case under the null hypothesis and the two alternative hypotheses for both
equal (scenario 1) and unequal (scenario 2) relative frequency in each stratum. In scenario 1, under the null hypothe-
sis, all methods were associated with negligible bias. Our proposed two-step RGLR provided similar efficiency relative to
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TABLE 2 Bias (% bias), percent relative efficiency defined as 100 times the ratio of mean squared error for the stratified Cox model
relative to competing method and coverage probability for 95% CI for overall log hazard ratio f for two strata based on 5000 simulations*

Scenario 1: Equal Stratum Sizes (f; = f, = 0.5)

Null Alt 1 (no interaction)  Alt 2 (interaction)
Censoring N/trt Method Bias %RE Cov %Bias %RE Cov %Bias %RE Cov
25% 50 Stratified Cox -0.001 100 (94.2) 1.8 100 94.6 -12.7 100  (92.8)
Two-step Cox (SS wts) -0.001 95 (93.9) 3.7 94 (94.0) 4.2 93 (94.1)
Two-step RGLR (SS wts) -0.001 102 94.7 0.1 101 95.0 0.5 100 94.8
Two-step Cox (MR wts) -0.001 97  (93.9) 2.8 97  (94.3) 0.7 97  (94.3)
Two-step RGLR (MR wts)  -0.001 105 94.9 -0.8 104 95.1 -3.0 103 94.7
100 Stratified Cox -0.001 100 95.0 0.9 100 94.8 -13.5 100 (90.1)
Two-step Cox (SS wts) -0.002 97 94.8 1.8 97 94.5 2.5 110  (94.0)
Two-step RGLR (SS wts) -0.002 102 95.3 -0.2 100 95.0 0.5 115 94.4
Two-step Cox (MR wts) -0.001 99 94.8 1.54 98 94.5 0.5 113 (94.1)
Two-step RGLR (MR wts)  -0.001 103 95.3 -0.6 102 95.0 -1.5 117 94.4
50% 50 Stratified Cox 0.000 100 94.4 2.0 100 94.7 -27.1 100 (89.8)
Two-step Cox (SS wts) 0.001 86 94.7 4.3 85 95.1 4.8 97 95.7
Two-step RGLR (SS wts) 0.001 93 95.6 0.4 93 96.0 1.0 106 96.3
Two-step Cox (MR wts) 0.000 94 94.4 2.8 93 94.8 -4.3 109 94.5
Two-step RGLR (MR wts) 0.000 102 95.5 -1.0 102 95.3 -8.3 116 94.8
100 Stratified Cox -0.001 100 95.0 1.1 100 94.9 -28.3 100 (82.7)
Two-step Cox (SS wts) -0.003 89 94.8 2.4 89 94.6 2.9 135 94.9
Two-step RGLR (SS wts) -0.003 93 95.3 0.3 93 95.1 0.8 142 95.2
Two-step Cox (MR wts) -0.002 95 94.7 1.7 95 94.6 -3.0 141 (93.5)
Two-step RGLR (MR wts)  -0.002 99 95.1 -0.4 99 94.9 -5.2 145  (93.6)
Scenario 2: Unequal Stratum Sizes (f; = 0.7,f, = 0.3)
Null Alt1 (no interaction)  Alt 2 (interaction)
Censoring N/trt Method Bias %RE Cov  %Bias %RE Cov %Bias %RE Cov
25% 50 Stratified Cox 0.002 100 (94.2) 1.6 100 94.6 -12.5 100 (93.4)
Two-step Cox (SS wts) 0.003 93  (94.2) 3.5 92 94.3 46 91  (94.2)
Two-step RGLR (SS wts) 0.002 101 94.9 0.0 99 95.0 0.0 100 94.9
Two-step Cox (MR wts) 0.002 96 (94.3) 2.6 96 94.5 0.2 98 (94.2)
Two-step RGLR (MR wts) 0.002 104 94.7 -0.9 103 95.0 -4.4 105 94.4
100 Stratified Cox 0.003 100 95.3 0.6 100 95.5 -12.1 100 (91.3)
Two-step Cox (SS wts) 0.002 96 95.0 1.5 96 95.3 2.5 106 94.4
Two-step RGLR (SS wts) 0.002 101 95.6 -0.5 100 95.7 0.0 112 94.8
Two-step Cox (MR wts) 0.002 98 95.0 1.1 98 95.4 0.1 111 94.4
Two-step RGLR (MR wts) 0.002 103 95.5 -0.9 102 95.5 -2.4 115 94.7
50% 50 Stratified Cox -0.001 100 95.0 1.5 100 95.0 -21.7 100 (90.0)
Two-step Cox (SS wts) -0.003 87 95.2 3.2 89 95.0 -0.3 104 95.9
Two-step RGLR (SS wts) -0.003 95 96.1 -0.5 97 95.8 -4.7 113 96.2
Two-step Cox (MR wts) -0.002 95 95.0 2.0 96 94.7 -8.4 112 (94.3)
Two-step RGLR (MR wts) -0.002 103 95.7 -1.6 104 95.5 -12.8 116 94.4
100 Stratified Cox 0.004 100 95.2 0.4 100 95.1 -21.0 100 (87.9)
Two-step Cox (SS wts) 0.004 88 95.0 1.3 89 94.9 4.1 106 95.5
Two-step RGLR (SS wts) 0.004 92 95.7 -0.7 93 95.3 1.4 113 95.9
Two-step Cox (MR wts) 0.004 94 94.9 0.8 95 94.8 2.3 116 (94.3)
Two-step RGLR (MR wts) 0.003 99 95.3 -1.2 99 95.3 -5.1 121 94.4

Abbreviations: Alt, alternative; Cov, coverage; MR wts, minimum risk weights; RGLR, refined generalized logrank statistic; SS wts, sample size weights; Trt,
treatment group. *Bias is reported under the null hypothesis and percentage bias is reported under the alternative hypothesis. Coverage probability more
than Z; ¢;5 standard errors below 95% is in square brackets. Each two-step method uses a weighted average of stratum-specific log hazard ratio estimates.

the stratified Cox model and higher efficiency than the Mehrotra et al’ two-step Cox model method under both weight-
ing schemes. Our proposed method also controlled the type I error rate under 5% across all simulated scenarios, while
both the stratified Cox model and the two-step Cox model method had inflated type I error for 50 subjects per treat-
ment group and 25% censoring. Under the alternative hypothesis with no stratum by treatment interaction (Alt 1), the
stratified Cox is expected to have the best performance, and the two-step RGLR provided very similar efficiency relative
to the stratified Cox model. The two-step RGLR also delivered a percentage bias less than 2% and maintained adequate
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coverage probability for the 95% CI, while the stratified Cox model failed to do so under equal stratum SS with 50 sub-
jects per treatment and 25% censoring. When there was interaction between treatment and stratum (Alt 2), the proposed
two-step RGLR provided notably better efficiency and smaller bias than all the other competing methods. Both the strat-
ified and two-step Cox model methods had issues with maintaining adequate 95% CI coverage probability in several
simulated scenarios, but the two-step RGLR with SS weights maintained adequate coverage probability throughout all
simulated settings. The two-step RGLR with MR weights also performed well but it failed to maintain adequate cover-
age probability in the scenario with 100 subjects per treatment and 50% censoring. With 100 subjects per treatment and
50% censoring, the two-step RGLR with SS weights delivered 42% higher efficiency than the stratified Cox model, with

TABLE 3 Bias (% bias), percent relative efficiency defined as 100 times the ratio of mean squared error for the stratified Cox
model relative to competing method and coverage probability for 95% CI for overall log hazard ratio § for 4 strata based on 5000

simulations*
Scenario 1: Equal Stratum Sizes (f; = f, = f; = f, = 0.25)
Null Alt1 (no interaction) Alt 2 (interaction)
Censoring N/trt Method Bias %RE Cov %Bias %RE Cov %Bias %RE Cov
25% 100 Stratified Cox 0.000 100 94.8 0.7 100 95.2 -8.5 100  (93.1)
Two-step Cox (SS wts) 0.001 93 (940) 3.3 91 94.6 36 92 (94.0)
Two-step RGLR (SS wts) 0.001 101 94.8 -0.3 99 95.3 -0.1 100 94.8
Two-step Cox (MR wts) 0001 95 (941) 26 94 94.9 1.8 95  (94.1)
Two-step RGLR (MR wts)  0.001 103 94.9 -1.0 101 95.4 -1.9 102 94.6
200 Stratified Cox 0.001 100 94.8 0.4 100 95.2 -9.2 100 (91.6)
Two-step Cox (SS wts) 0001 97 947 1.6 9 94.9 1.6 114 (94.2)
Two-step RGLR (SS wts) 0.001 102 95.2 -0.4 100 95.4 -0.4 119 94.7
Two-step Cox (MR wts) 0.001 98 94.7 1.3 97 95.0 0.6 116  (94.1)
Two-step RGLR (MR wts)  0.001 103 95.1 -0.7 101 95.3 -1.5 119 94.4
50% 100 Stratified Cox -0.001 100 94.9 1.1 100 94.7 -16.0 100  (90.7)
Two-step Cox (SS wts) -0.001 87 94.5 4.1 85 94.5 4.3 94 94.9
Two-step RGLR (SS wts) -0.001 94 954 0.2 93 95.3 0.4 104 95.7
Two-step Cox (MR wts) ~ -0.001 92  (94.3) 2.9 90  (94.2) 02 102 (93.9)
Two-step RGLR (MR wts) -0.001 99 95.3 -1.0 99 94.9 -3.8 110 94.6
200 Stratified Cox 0.000 100 94.9 0.4 100 95.2 -16.9 100 (86.4)
Two-step Cox (SS wts) -0.001 94 94.9 1.9 91 94.8 2.2 129 95.0
Two-step RGLR (SS wts) -0.001 98 95.4 -0.3 96 95.4 0.1 136 95.3
Two-step Cox (MR wts) -0.001 96 947 1.3 95 94.6 0.5 134  (94.3)
Scenario 2: Unequal Stratum Sizes (f; = 0.15,f, = 0.35,f; = 0.35,f, = 0.15)
Null Alt 1 (no interaction)  Alt 2 (interaction)
Censoring N/trt Method Bias %RE Cov %Bias %RE Cov %Bias %RE Cov
25% 100 Stratified Cox 0.000 100 95.1 0.8 100 95.6 -9.8 100  (92.4)
Two-step Cox (SS wts) 0.000 93 942 3.5 91 94.9 3.4 95  (94.3)
Two-step RGLR (SS wts) 0.000 101 95.0 -0.1 99 95.6 -0.6 104 94.9
Two-step Cox (MR wts) 0.000 95 944 2.6 94 95.2 1.2 100 (94.3)
Two-step RGLR (MR wts)  0.000 103 95.1 -0.9 101 95.5 -2.8 107 94.6
200 Stratified Cox -0.000 100 95.5 0.5 100 95.2 -9.8 100 (91.1)
Two-step Cox (SS wts) -0.001 97 95.2 1.7 96 94.9 2.0 113 94.9
Two-step RGLR (SS wts) -0.000 101 95.6 -0.2 100 95.2 -0.2 119 95.3
Two-step Cox (MR wts) -0.000 98 95.1 1.4 97 94.8 0.9 116 94.8
Two-step RGLR (MR wts) -0.000 102 95.8 -0.6 101 95.4 -1.4 120 95.1
50% 100 Stratified Cox 0.002 100 95.0 0.5 100 95.3 -16.8 100  (90.9)
Two-step Cox (SS wts) 0.002 91 94.8 3.4 89 95.2 -0.3 112 95.4
Two-step RGLR (SS wts) 0.002 98 95.7 -0.4 97 95.9 -4.2 119 95.9
Two-step Cox (MR wts) 0.002 95 94.6 2.2 94 94.9 -4.1 116 94.7
Two-step RGLR (MR wts)  0.002 102 95.4 -1.6 102 95.6 -8.0 119 94.7
200 Stratified Cox 0.001 100 95.0 0.2 100 95.4 -16.5 100 (86.8)
Two-step Cox (SS wts) 0.002 93 94.9 1.7 93 95.2 1.9 128 95.4
Two-step RGLR (SS wts) 0.002 97 95.3 -0.4 97 95.4 -0.4 136 95.5
Two-step Cox (MR wts) 0.002 96 94.6 1.2 96 95.0 -0.9 134 94.4
Two-step RGLR (MR wts)  0.002 100 95.1 -0.9 100 95.2 -3.2 138 94.7

Abbreviations: Alt, alternative; Cov, coverage; MR wts, minimum risk weights; RGLR, refined generalized logrank statistic; SS wts, sample size
weights; Trt, treatment group. *Bias is reported under the null hypothesis and percentage bias is reported under the alternative hypothesis. Coverage
probability more than Z; g;5 standard errors below 95% is in square brackets. Each two-step method uses a weighted average of stratum-specific log
hazard ratio estimates.
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a percentage bias of 0.8%, comparing to -28.3% bias from the stratified Cox model. The performance of the methods for
unequal relative frequency in each stratum was similar to that for equal relative frequency described above.

Table 3 shows the results for the four strata case. Under both equal and unequal relative stratum frequency, our two-step
RGLR provided the smallest bias and higher relative efficiency compared to the stratified Cox model. When there was a
treatment by stratum interaction, the stratified Cox model had a bias as large as -16.9%, while the two-step RGLR con-
trolled the bias under 8%. In terms of type I error, the stratified and two-step Cox model methods had inflated type I
error issues with smaller SSs (100 subjects per treatment group with 25% and 50% censoring under scenario 1), while our
two-step RGLR did not. In terms of coverage probability, the two-step RGLR maintained adequate coverage probability
for 95% CI throughout all scenarios, while the stratified Cox model failed to do so under several scenarios.

We also examined power among the methods. Table 4 shows the results for 100 subjects per treatment with 50% cen-
soring for two strata and four strata cases; results under other simulated scenarios (not shown) did not provide additional
insights and are hence not shown. When there was no interaction between treatment and stratum, our two-step RGLR
provided similar power as the stratified Cox model. When there was interaction, using two-step RGLR delivered a power
increase of at least 5 percentage points relative to the stratified Cox model. While the two-step Cox model method seemed
to have slightly better power than the two-step RGLR, the former also sometimes had inflated type I error rate while our
two-step RGLR did not.

4 | APPLICATION

We apply the stratified Cox model, the Mehrotra et al’ two-step Cox model method and our proposed two-step RGLR
method, with both two-step methods using SS and MR weights, to a clinical trial involving resected colon cancer.'* The
data set included 154 patients with stage C colon cancer who were randomized to receive placebo or levamisole combined
with fluorouracil therapy, with 77 patients in each group. The outcome of interest was overall survival. Patients were
stratified by the number of lymph nodes involved (< 4 vs >4). Table 5 summarizes the results from applying all the
methods. The stratified Cox model provided an estimated overall hazard ratio (therapy:placebo) of exp(—0.64) = 0.53
(95% CI, 0.31-0.90), with a P value of 0.021. On the other hand, the two-step Cox and two-step RGLR, for both SS and
MR weights, provided a non-significant P value (>0.05). The estimated hazard ratio in stratum 1 using Cox and RGLR
was exp(—0.27) = 0.76 and exp(—0.26) = 0.77, respectively, with corresponding estimates of the hazard ratio in stratum
2 being exp(—1.16) = 0.31 and exp(—1.14) = 0.32, respectively. The MR weight for both two-step RGLR and two-step
Cox is 0.69 and 0.31 for strata 1 and 2, respectively. The SS weight is 0.73 and 0.27 for strata 1 and 2, respectively. The
Kaplan-Meier curves by stratum in Figure 1 appear to support a differential treatment effect across the two strata; ie, they
suggest evidence of a treatment by stratum interaction, thereby casting doubt on the stratified Cox model analysis, which

TABLE 4 Power comparisons among the competing methods based on 100 subjects per treatment group and 50% censoring with 5000
simulations for two strata (top panel) and four strata (bottom panel)

Two Strata
Scenario1:f; = f, = 0.5 Scenario 2:f; = 0.7,f, = 0.3
Method Alt1 (no interaction) Alt 2 (interaction) Alt1 (no interaction) Alt2 (interaction)
Stratified Cox 92.5 (66.8) 96.2 (80.5)
Two-step Cox (SS wts) 90.4 86.2 94.9 90.7
Two-step RGLR (SS wts) 89.8 85.0 94.4 89.5
Two-step Cox (MR wts) 91.8 (84.2) 95.6 (89.9)
Two-step RGLR (MR wts)  91.3 (83.1) 95.1 88.9
Four Strata
Scenariol:f, = f, = f; = f, = 0.25 Scenario 2:f; = 0.15,f, = 0.35,f;, = 0.35,f, = 0.15
Method Alt1 (no interaction) Alt 2 (interaction) Alt1 (no interaction) Alt 2 (interaction)
Stratified Cox 91.2 78.8 90.8 (80.6)
Two-step Cox (SS wts) 89.8 86.9 89.9 87.3
Two-step RGLR (SS wts) 88.5 85.4 88.4 85.6
Two-step Cox (MR wts) (90.9) (87.2) 90.8 87.4
Two-step RGLR (MR wts)  89.7 85.5 89.3 85.6

Abbreviations: Alt, alternative; MR wts, minimum risk weights; RGLR, refined generalized logrank; SS wts, sample size weigthts. Square brackets indicate
the case where the coverage probability is more than Z, 475 standard errors below 95%.
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FIGURE1 Kaplan-Meier survival curves by treatment group; A, is for stratum 1 B, is stratum 2

assumes no treatment by stratum interaction. The overall hazard ratio from the two-step RGLR with SS and MR weights
was estimated to be exp(—0.50) = 0.61 (95% CI, 0.34-1.06) and exp(—0.53) = 0.59 (95% CI, 0.83-1.02), respectively. These
estimates are deemed more reliable than those based on the stratified Cox model.

5 | CONCLUSIONS

The stratified Cox model is often used to analyze stratified randomized clinical trials with time-to-event data. However,
the assumption of equal hazard ratios across strata may not be true in real applications. Therefore, it is important to
develop methods to handle a treatment by stratum interaction, especially in relatively small stratified trials with low
power to detect a treatment by stratum interaction. In this work, we proposed a two-step approach in which we estimate
stratum-specific log hazard ratios using the RGLR approach and combine them across strata using SS or MR weights.
Through simulation studies, we have shown that the two-step RGLR provides notably smaller bias and smaller MSE than
the conventional stratified Cox model when there is a treatment-by-stratum interaction, with similar performance when
there is no interaction. The stratified Cox model tends to inflate the type I error in small samples, while the two-step RGLR
does not. The stratified Cox model also has issues with CI under-coverage in small samples, while the two-step RGLR
with SS weights does not and with MR weights generally does not. The two-step RGLR method also delivers much higher
power than the stratified Cox model when the hazard ratio differs across strata while suffering no material power loss in
other cases. Finally, the proposed method has similar or better performance than the two-step method of Mehrotra et al’
in terms of bias and MSE; this to be be expected because within each stratum, the RGLR estimator outperforms the Cox
model estimator in small to moderate SSs, notably so in small samples."!

The two-step RGLR removes the restrictive assumption of equal hazard ratios across strata in the stratified Cox model
analysis and outperforms the stratified Cox model when there is an interaction between treatment and stratum. More
importantly, the two-step RGLR also provides an estimated stratum-specific hazard ratio, while the stratified Cox model
only provides an estimated overall hazard ratio. As shown in the colon cancer example, when the hazard ratio is different
across strata, using the two-step RGLR can provide additional insight into the difference across strata, while the stratified
Cox model does not.
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