
Received: 24 May 2017 Revised: 12 February 2018 Accepted: 5 May 2018

DOI: 10.1002/sim.7834

R E S E A R C H A R T I C L E

Incorporating baseline measurements into the analysis of
crossover trials with time-to-event endpoints

Rengyi Xu1 Devan V. Mehrotra2 Pamela A. Shaw1

1Department of Epidemiology and
Biostatistics, University of Pennsylvania,
Philadelphia, USA
2Biostatistics and Research Decision
Sciences, Merck & Co, Inc, Philadelphia,
USA

Correspondence
Rengyi Xu, Department of Epidemiology
and Biostatistics, University of
Pennsylvania, Philadelphia, PA 19104,
USA.
Email:
xurengyi@pennmedicine.upenn.edu

Two-period two-treatment (2×2) crossover designs are commonly used in clin-
ical trials. For continuous endpoints, it has been shown that baseline (pretreat-
ment) measurements collected before the start of each treatment period can be
useful in improving the power of the analysis. Methods to achieve a correspond-
ing gain for censored time-to-event endpoints have not been adequately studied.
We propose a method in which censored values are treated as missing data and
multiply imputed using prespecified parametric event time models. The event
times in each imputed data set are then log-transformed and analyzed using
a linear model suitable for a 2×2 crossover design with continuous endpoints,
with the difference in period-specific baselines included as a covariate. Results
obtained from the imputed data sets are synthesized for point and confidence
interval estimation of the treatment ratio of geometric mean event times using
model averaging in conjunction with Rubin's combination rule. We use simula-
tions to illustrate the favorable operating characteristics of our method relative
to two other methods for crossover trials with censored time-to-event data, ie, a
hierarchical rank test that ignores the baselines and a stratified Cox model that
uses each study subject as a stratum and includes period-specific baselines as a
covariate. Application to a real data example is provided.
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1 INTRODUCTION

Crossover designs are commonly seen in clinical trials to compare the treatment effects on the same subject over differ-
ent treatment periods. For trials with limited recruitment, crossover designs are ideal to use for higher efficiency than
parallel designs. The ability of each person to serve as his or her own control also mitigates the influence of potential con-
founding factors. In commonly used two-period two-treatment (2 × 2) crossover designs, subjects are randomized to one
of two sequences, AB or BA, where A and B are the treatment labels. A “washout” period is included between the two
periods to ensure no carry-over effects. The use of a period-specific baseline measurement, which is taken before the sub-
ject is given the treatment in each period, is often considered. However, whether and how to use a baseline measurement
is often challenging, given the extra cost and the need to determine which statistical methods can be used to fully utilize
the information from the baselines. For a 2×2 crossover trial, each subject has four responses, ie, baseline (ie, pretreat-
ment) in period 1, posttreatment in period 1, baseline in period 2, and posttreatment in period 2. There are many existing
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methods for handling baseline information in the analysis of crossover trials with continuous endpoints, including ignor-
ing baseline measurements, analyzing the change from baseline, using a function of the baselines as a covariate, and joint
modeling of baseline and posttreatment responses.1-6

Mehrotra7 evaluated and compared 13 different methods for analyzing 2×2 crossover trials to incorporate baseline
measurements with continuous endpoints. Among all the competing methods, two methods were shown to have the
highest efficiency, ie, analysis of covariance (ANCOVA) with the within-subject difference in baseline responses used as a
covariate and joint modeling of the within-subject difference in treatment responses and difference in baseline responses.
The commonly used method, analysis of the change from baseline, was shown to have poor efficiency, as also discussed
by Kenward and Roger1 and Metcalfe.5

All methods aforementioned are for continuous endpoints, but crossover trials with censored time-to-event endpoints
are also commonly encountered in research. For example, blood thinners like Warfarin are important in preventing out-
comes such as blood clots and stroke but can also induce undesirable increases in bleeding time from simple cuts or other
injuries. In this setting, researchers are sometimes interested in studying the effect of an experimental anticoagulant drug
on bleeding time using a crossover design with a baseline measurement at the beginning of each period. Kimchi et al8 and
Markman et al9 both studied a drug's effect in a crossover trial with a time-to-event outcome and collected baseline mea-
surements. However, neither incorporated the baseline information into their analysis. Our motivating data example is a
crossover trial studying a drug's effect in preventing cardiac-related symptoms during a treadmill walking test. The out-
come of interest for each subject is time to a specific cardiopulmonary event, with the outcome recorded as “>10 minutes”
(ie, right censored) if the event has not yet occurred after 10 minutes of observation. Existing literature for examining treat-
ment differences in crossover trials with censored time-to-event endpoints includes both regression-based and test-based
approaches. A straightforward approach is to apply McNemar's test, which classifies patients by whether they respond
better to one treatment or not. However, as noted by both France et al10 and Brittain and Follmann,11 this approach fails
to incorporate event times into the analysis and ignores patients with events in both periods or with no events in either
period. France et al10 used a conventional stratified Cox regression approach to model the hazard ratio, where each sub-
ject was treated as a stratum and the same hazard ratio parameter assumed across strata.12 The hazard ratio between the
two treatment sequences can then be estimated. Feingold and Gillespie13 proposed an approach based on the generalized
Wilcoxon test. More recently, Brittain and Follmann11 proposed a hierarchical rank (H-R) test, which they showed to have
similar or greater power than both the Feingold and Gillespie's method and stratified Cox method under certain censor-
ing patterns. The main idea behind the H-R test is that avoiding an event is more clinically meaningful than delaying an
event. Therefore, each patient is assigned a rank that orders how much better an individual does on the novel treatment.
The first order of ranking is based on whether patients have an event with the most extreme ranks going to those with
an event only in one period. The second order of ranking is based on the times of the events for patients with events in
both periods. Patients who do not have an event on either treatment receive the same rank, namely, the average of the
remaining ranks. With assigned ranks for everyone, a two-group Wilcoxon test is then performed to test for a treatment
effect. However, none of these Wilcoxon-type approaches utilizes baseline information. Moreover, the target parameter of
interest for the two Wilcoxon approaches is more difficult to interpret, as it is dependent on both the underlying survival
and censoring distributions.

In this paper, we propose a regression-based method using multiple imputation (MI) of censored values and ANCOVA
to incorporate baseline measurements into the analysis of 2×2 crossover studies with censored time-to-event response
outcomes. There is often uncertainty about the true underlying survival distribution in real data applications, and mis-
specification of the distribution can lead to a biased point estimator and/or inefficient analysis. To mitigate this risk, we
propose to fit multiple survival models in the imputation step, and use frequentist model averaging to pool the final results
from the ANCOVA step. Unlike Bayesian model averaging,14,15 which requires setting a prior probability for each candi-
date model, frequentist model averaging does not require any priors.16-18 To implement model averaging in the presence
of MI, we need to account for both the uncertainty from model averaging and imputation.

We show that there is often a nontrivial efficiency gain in using baseline information for time-to-event endpoints in
crossover trials compared with the H-R test and stratified Cox model. Furthermore, our proposed method is also able to
provide a point and confidence interval estimate of a meaningful parameter of interest (treatment ratio of the geometric
mean event times). Section 2 presents details of the proposed method. In Section 3, we contrast the numerical performance
of our proposed method with that of the H-R test and stratified Cox model through simulation studies. Section 4 includes
results from applying the different methods to our motivating real data example. Section 5 includes conclusions.

2 METHODS

We consider a 2×2 crossover trial with two treatments, denoted by A and B. Subjects are randomized to either the AB or
BA sequence, with a wash-out period between period 1 and 2. Let Xijk and Yijk denote baseline and posttreatment event
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times, respectively, for subject j from sequence k in period i, where i = 1, 2; j = 1, 2, … ,n; and k = 1, 2. It is sufficient to
assume that, after a log transformation, (X1j1,Y1j1,X2j1,Y2j1)T and (X1j2,Y1j2,X2j2,Y2j2)T follow a multivariate distribution
with different means and same variance-covariance structure Σ. We assume there is no censoring at baseline, and in each
period, subjects without a posttreatment event are censored at the end of the period, denoted by time 𝜏.

We propose a three-step procedure using MI and ANCOVA to estimate the ratio of geometric means of the event times
for treatment A relative to B, denoted as 𝜃, and test the null hypothesis H0 ∶ 𝜃 = 1. For distributions that are symmetric on
the log scale, the geometric mean is equivalent to the median. Thus, our parameter of interest can be used to approximate
the ratio of median survival of the two treatments, which is commonly of interest in survival analysis. To implement our
proposed method, we perform the following steps for each imputation iteration, details of which are given in the sections
as follows.

Step 1: Fit two candidate parametric event models, ie, log normal and Weibull, to impute the posttreatment censored
values sequentially, conditioning on the baseline event time in period 1 for period 1 imputation, and both baseline
event times and posttreatment event time in period 1 for period 2 imputation.

Step 2: With the completed data set from each candidate model, perform ANCOVA on the log-transformed event times
to estimate log 𝜃, and obtained its standard error.

Step 3: Average across the log 𝜃 estimates based on weights associated with Akaike information criterion (AIC) from
each parametric model fit to get a model averaged estimate and standard error and synthesize for overall point
and confidence interval estimation across the multiply imputed data sets using Rubin's rule.

It is important to note that, although we consider only two distributions in Step 1, our method can be easily generalized
to include more prespecified candidate models in the imputation step. We chose log normal and Weibull because they
are very flexible and in our experience provide reasonable fitting models for capturing commonly seen event time data.
Through numerical studies in Section 3, we show that even averaging over a small number of models can deliver a good
performance.

2.1 Imputation
We generate M imputed data sets for each candidate model. Let Zijk = 0, 1 denote treatment A and B, respectively, for
subject j in period i and sequence k. We impute the censored values in period 1 first, and then impute the censored values
in period 2. In the mth imputed data set, we use the baseline value in period 1 and treatment indicator, ie, Z1jk, as covariates
and fit two candidate parametric survival models, ie, log normal and Weibull, respectively, to Y1jk. Let

log Y1𝑗k = 𝛽s,0 + 𝛽s,1Z1𝑗k + 𝛽s,2Us,1𝑗k + 𝜎s,1Ws,1𝑗k, (1)

where s = 1, 2 denotes the log normal and Weibull model, respectively; Ws,1jk is the error distribution; and Us,1jk is the
baseline covariate in the sth model. W1,1jk has the standard normal distribution for the log-normal distribution and W2,1jk
has the standard extreme value distribution for the Weibull distribution. U1,1𝑗k = log X1𝑗k for the log-normal distribution,
and U2,1jk = X1jk for the Weibull distribution; sample R code for implementation is provided in the Supporting Materials.
Equation (1) is a representation of the log normal and accelerated failure time model framework for the Weibull model
that highlights the common linear regression model on the log scale. For fitting the parametric model, we analyze the log
event times for the log-normal model and fit the traditional Weibull model for the event times on the original scale. We
use robust sandwich standard errors in both candidate models to correct for potential model misspecification.

Let 𝜷̂s = (𝛽s,0, 𝛽s,1, 𝛽s,2, 𝜎̂s,1)T and Σ̂s denote the estimated coefficients and variance-covariance matrix in the sth candi-
date model, respectively. At the mth imputation step, we draw 𝜷̂

(m)
s from a multivariate normal distribution N(𝜷̂s, Σ̂s). For

subject with a censored posttreatment value, we then impute a right-censored value with an uncensored value by using
𝛽
(m)
s , treatment indicator Z1jk and subject-specific period 1 baseline values in Equation (1), and the distribution implied

by model s truncated at the observed censoring time. The corresponding complete set of uncensored posttreatment values
in period 1 are denoted by Y (m)

s,1𝑗k.
Now, with complete data in period 1, we can then use the observed/imputed posttreatment values in period 1, baseline

values in both period 1 and period 2 as covariates, to impute post-treatment censored values in period 2 by fitting the sth
model

log Y2𝑗k = 𝛼s,0 + 𝛼s,1Z2𝑗k + 𝛼s,2Us,1𝑗k + 𝛼s,3Vs,2𝑗k + 𝛼s,4R(m)
s,1𝑗k + 𝜎s,2Ws,2𝑗k, (2)
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where U1,1𝑗k = log X1𝑗k,V1,2𝑗k = log X2𝑗k,R(m)
s,1𝑗k = log Y (m)

s,1𝑗k for log-normal distribution, U1,1𝑗k = X1𝑗k,V2,2𝑗k = X2𝑗k,R(m)
s,1𝑗k =

Y (m)
s,1𝑗k for Weibull distribution, and Z2jk is the treatment indicator in period 2. The imputation procedure described for

period 1 is now implemented using random draws from the assumed multivariate normal distribution of the vector of
estimated regression coefficients in Equation (2) for each of the two parametric models. The corresponding uncensored
posttreatment values in period 2 are denoted by Y (m)

s,2𝑗k.

2.2 Analysis of covariance
After each imputation, we have two sets of complete data on every subject from the two candidate models, ie, log normal
and Weibull. Each imputed data set is analyzed using ANCOVA on the log-transformed event times. Specifically, we
regress the difference between posttreatment event times Δ(m)

s,𝑗k = log Y (m)
s,1𝑗k − log Y (m)

s,2𝑗k, on the difference between baseline
measurements D𝑗k = log X1𝑗k − log X2𝑗k and the sequence indicator Qj

Δ(m)
s,𝑗k = 𝛾s,0 + 𝛾s,1D𝑗k + 𝛾s,2Q𝑗 + 𝜖s,𝑗k, (3)

where 𝜖s, jk ∼ N(0, 𝜂2).
The point estimator from the sth model in the mth imputed data set is log 𝜃̂(m)

s = 𝛾̂
(m)
s,2 ∕2, which is the logarithm of

the ratio of geometric means for treatment A relative to B. The corresponding variance estimate for log 𝜃̂(m)
s from the sth

model in the mth imputed data set is v̂(m)
s .

2.3 Model averaging and Rubin's combination rule
For overall estimation and inference, we first combine the two estimators for log 𝜃 from the candidate models in each
imputed data set, and then pool the model-averaged estimators from all the imputed data sets and obtain the pooled
variance estimate that accounts for both the uncertainty from model averaging and imputation.19

For model averaging, we need to assign a standardized weight. There are many different options for the choice
of weights, including an information criterion,17 Mallows' criterion,20,21 and cross-validation criterion.22 We propose
the straightforward and commonly used AIC23 to assign weights. Let Is denote the AIC for the ANCOVA regression,
Equation (3), from the sth candidate model, and then the weight is defined as17

ws =
exp(−Is∕2)∑2
i=1 exp(−Ii∕2)

.

The model-averaged estimator for the mth imputed data set is log 𝜃̂(m) =
∑2

s=1 ws log 𝜃̂(m)
s , and the variance for the model

averaging estimator is estimated by17

̂Var
(
log 𝜃̂(m)) = [ 2∑

s=1
ws

√
̂Var

(
log 𝜃̂(m)

s

)
+
(

log 𝜃̂(m)
s − log 𝜃̂(m)

)2
]2

. (4)

Now, we can pool the model-averaged estimators across the M imputed data sets, with the final estimator calculated as19

log ̄̂
𝜃 = 1

M

M∑
m=1

log 𝜃̂(m). (5)

When there is no model averaging, we can use Rubin's method24 to combine the results from MI. As noted earlier, with
the presence of model averaging, the uncertainty from both model averaging and imputation needs to considered. The
between-imputation variance is

vbtw = 1
M − 1

M∑
m=1

(
log 𝜃̂(m) − log ̄̂

𝜃

)2
.

The within-imputation variance is the average of the estimated variance from Equation (4) across M imputed data sets

vwithin = 1
M

M∑
m=1

̂Var
(
log 𝜃̂(m)) .
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Therefore, the total variance of the estimator after MI is19

vtotal =
(

1 + 1
M

) 1
M − 1

M∑
m=1

(
log 𝜃̂(m) − log ̄̂

𝜃

)2
+ 1

M

M∑
m=1

[ 2∑
s=1

ws

√
̂Var

(
log 𝜃̂(m)

s

)
+
(

log 𝜃̂(m)
s − log 𝜃̂(m)

)2
]2

. (6)

To test the null hypothesis H0 ∶ 𝜃 = 𝜃0 (with 𝜃0 = 1 in our application), we carry out a t-test with test statistic
(log ̄̂

𝜃 − log 𝜃0)∕
√

vtotal. To calculate the degrees of freedom d∗ for the t-test, we follow the work of Barnard and Rubin25

so that d∗ = (1∕d + 1∕d̂obs)−1, where d = (M − 1)
[
1 + vwithin

(1+1∕M)vbtw

]2
and d̂obs = (1 − (1 + 1∕M)vbtw∕vtotal)

(
dcom+1
dcom+3

)
dcom, and

dcom is the degrees of freedom for ̄̂
𝜃 when there are no missing values.

3 SIMULATION

3.1 Simulation set-up
To compare the performance of our proposed approach to the H-R test and stratified Cox model, we carried out a simula-
tion study to examine type I error and power among all three methods. Since our method utilized baseline information,
we also included the period-specific baseline event times, in addition to the treatment indicator, as covariates in the strat-
ified Cox model to make a fair comparison. The H-R test, however, does not incorporate baseline information, and thus,
we used the method as is. We also examined the bias and 95% confidence interval (C.I.) coverage probability from our
proposed estimator; of note, the other two methods cannot deliver an estimate of our parameter of interest (𝜃).

We simulated three underlying distributions for event times, namely, log normal, exponential, and gamma. Two of
the distributions, log normal and exponential (a special case of the Weibull), are included in the candidate models in
our method, while the gamma distribution is not. The density curves for each of the three distributions are shown
in Supplementary Figure S.1 in the Supporting Materials. Under the log-normal distribution, for each of the N sub-
jects in sequence AB and BA, we generated correlated log event times from a multivariate normal distribution with
mean parameter (0, log 𝜃, 0, 0)T for AB sequence and (0, 0, 0, log 𝜃)T for BA sequence and common variance-covariance
structure with common variance 1 and correlation coefficients 𝜌12, 𝜌13, 𝜌14, 𝜌23, 𝜌24, and 𝜌34. We considered three corre-
lation structures, ie, compound symmetry (CS), first-order autoregressive (AR(1)), and equipredictability (EP), where
𝜌12 = 𝜌13 = 𝜌14 = 𝜌23 = 𝜌24 = 𝜌34 = 𝜌 for CS, 𝜌12 = 𝜌23 = 𝜌34 = 𝜌, 𝜌13 = 𝜌24 = 𝜌2, 𝜌14 = 𝜌3 for AR(1), and
𝜌23 = 𝜌14, 𝜌24 = 𝜌13, 𝜌34 = 𝜌12 for EP. The correlation structures are as follows:

ΣCS =
⎛⎜⎜⎜⎝

1 𝜌 𝜌 𝜌
𝜌 1 𝜌 𝜌
𝜌 𝜌 1 𝜌
𝜌 𝜌 𝜌 1

⎞⎟⎟⎟⎠ ΣAR =
⎛⎜⎜⎜⎝

1 𝜌 𝜌2 𝜌3

𝜌 1 𝜌 𝜌2

𝜌2 𝜌 1 𝜌

𝜌3 𝜌2 𝜌 1

⎞⎟⎟⎟⎠ ΣEP =
⎛⎜⎜⎜⎝

1 𝜌12 𝜌13 𝜌14
𝜌12 1 𝜌14 𝜌13
𝜌13 𝜌14 1 𝜌12
𝜌14 𝜌13 𝜌12 1

⎞⎟⎟⎟⎠ .
The EP matrix assumes that the correlation between baseline and posttreatment in period 1 and 2 is equivalent (𝜌12), the
correlation between baseline response in period 1 and 2 is equal to the correlation between posttreatment response in
period 1 and 2 (𝜌13), and the correlation between baseline in period 1 and posttreatment response in period 2 is equal to
that between baseline period 2 and posttreatment response in period 1 (𝜌14).

We assumed no censoring in baseline event times in each period, and the posttreatment event times were right-censored
at time 𝜏. As discussed in the previous section, the parameter of interest 𝜃 is the ratio of the geometric means of the event
times for treatment A and treatment B, and under the log-normal distribution, it is equivalent to the ratio of median event
times.

For the exponential distribution, we used copulas26 to generate correlated event times from a multivariate exponential
with mean (2, 2𝜃, 2, 2)T for AB sequence and (2, 2, 2, 2𝜃)T for BA sequence and common variance-covariance structure and
correlation coefficients as specified. Note that the ratio of arithmetic means is equivalent to the ratio of geometric means
under exponential distribution. Since copulas only preserve the rank correlation coefficient but not the linear correlation
coefficient,27 the correlated exponential data follows approximately, but not exactly, the specified variance-covariance
structure.

To further illustrate the performance of our proposed method, we also considered an underlying gamma distribution,
which is not included in our two candidate models from the imputation step. Specifically, we used a gamma distribution
with scale of 0.7 and shape of 2 for subjects in treatment B. Event times for subjects in treatment A was generated from a
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gamma distribution with scale of 0.7𝜃 and shape of 2. We again used copulas to generate the correlated event times. For AB
sequence, the simulated event times followed a multivariate gamma distribution with mean (1.4, 1.4𝜃, 1.4, 1.4)T, and for
BA sequence, the event times follows a multivariate gamma distribution with mean (1.4, 1.4, 1.4, 1.4𝜃)T. Note that it can
be shown that the ratio of arithmetic means is equivalent to the ratio of geometric means in this setting. Details are pro-
vided in the Supporting Materials. Again, the event times in the two sequences followed a common variance-covariance
structure and correlation coefficients as specified.

We varied the sample size, percentage of censoring, 𝜃, correlation structure, and compared the performance of the
different methods. Sample size per sequence was varied as N = 12, 24, 48, and percentage of censoring was controlled by
changing the time 𝜏 to generate 10% and 50% censoring for the total sample.

The mean pairwise correlation coefficient 𝜌̄, ie, the mean of all unique off-diagonal components, took values of 0.5 and
0.7. Under CS, 𝜌 = 𝜌̄. For AR(1), 𝜌 = 0.7 for 𝜌̄ = 0.5 and 𝜌 = 0.83 for 𝜌̄ = 0.7. For EP, we set 𝜌12 = 0.6, 𝜌13 = 0.5, and
𝜌14 = 0.4 when 𝜌̄ = 0.5 and 𝜌12 = 0.8, 𝜌13 = 0.7, and 𝜌14 = 0.6 when 𝜌̄ = 0.7. We generated M = 50 imputed data
sets within each of the 5000 replications. Under the null hypothesis, 𝜃 = 1. Under the alternative hypothesis, we chose a

TABLE 1 Type I error (target= 5%) for the hierarchical rank (H-R) test, stratified Cox model with baseline adjustment (SCB), and
proposed multiple imputation with model averaging and analysis of covariance (MIMA) for log-normal, exponential, and gamma
distributions under the null hypothesis H0 ∶ 𝜃 = 1 and bias in the estimate of log 𝜃 using the proposed method (5000 simulations)

𝝆̄=𝟎 . 𝟓 𝝆̄=𝟎 . 𝟕
10% Censoring 50% Censoring 10% Censoring 50% Censoring

Distribution Σ Measure ∖ N/seq 12 24 48 12 24 48 12 24 48 12 24 48
Log-normal CS H-R 4.6 4.3 4.9 4.4 4.3 4.8 4.5 5.0 4.3 4.6 4.8 4.8

SCB 4.5 4.4 4.9 NC 4.4 4.6 4.5 5.0 4.8 NC 4.5 4.9
MIMA 4.3 4.8 4.9 2.4 3.9 4.9 4.8 4.9 4.8 1.9 3.8 4.2
Bias -0.002 -0.002 0.000 0.001 0.002 -0.002 0.005 -0.002 -0.001 0.001 0.003 0.002

AR(1) H-R 5.0 4.0 4.8 5.0 4.7 4.8 4.7 4.8 5.0 4.8 4.6 4.8
SCB 4.2 4.4 4.5 NC 4.6 4.9 3.6 4.2 5.1 NC 4.6 4.7
MIMA 4.6 4.4 4.7 2.8 3.8 4.8 4.7 4.7 5.0 2.6 4.0 4.5
Bias 0.002 0.002 0.001 -0.007 0.000 -0.002 -0.001 -0.002 0.001 0.001 -0.002 -0.001

EP H-R 4.4 5.1 4.7 4.8 4.4 4.4 4.8 4.3 4.4 4.4 5.1 4.9
SCB NC 4.9 4.5 NC 4.7 4.6 NC 3.7 4.3 NC NC 4.8
MIMA 4.5 5.0 5.0 2.7 4.4 4.7 4.7 4.4 4.7 1.4 3.2 3.7
Bias -0.001 0.001 -0.002 0.001 0.001 0.001 0.001 -0.001 0.001 0.002 -0.000 0.002

Exponential CS H-R 4.8 4.8 5.0 4.9 4.5 4.8 4.7 4.6 5.0 4.1 4.3 4.3
SCB 5.1 (5.6) 4.6 NC 4.7 5.0 4.0 4.7 5.3 NC 4.4 5.0
MIMA 4.7 5.0 4.4 2.2 3.8 5.1 4.4 4.8 4.5 1.8 2.9 4.0
Bias -0.003 -0.002 0.001 -0.071 -0.006 0.002 0.001 -0.001 0.002 0.063 0.002 -0.002

AR(1) H-R 4.6 4.6 4.6 4.6 5.0 4.4 4.3 5.0 5.1 4.5 4.5 4.8
SCB NC 4.5 5.2 NC 4.7 4.6 NC 4.8 5.2 NC NC 4.7
MIMA 4.9 4.7 4.2 2.0 3.5 4.2 4.4 4.5 4.5 1.9 2.9 3.0
Bias -0.001 0.004 0.002 0.002 0.001 0.002 -0.001 -0.002 0.002 0.004 -0.001 -0.003

EP H-R 4.2 4.3 4.4 4.5 4.2 4.4 4.8 4.7 4.9 4.4 4.5 4.9
SCB NC 4.4 4.8 NC 4.3 4.5 NC NC 4.2 NC NC 4.2
MIMA 4.4 4.3 4.5 1.8 3.3 4.3 4.4 4.6 4.6 1.4 2.1 2.4
Bias -0.004 0.001 0.001 0.003 0.003 -0.001 0.002 -0.001 0.001 -0.015 0.001 0.001

Gamma CS H-R 4.2 4.4 4.7 4.4 4.4 4.6 4.2 4.7 4.4 4.1 4.8 5.1
SCB 4.2 4.9 4.6 NC 4.6 4.8 NC (5.9) 4.7 NC 4.9 (5.6)
MIMA 4.5 4.7 4.9 4.2 4.7 5.0 4.7 5.0 4.8 3.2 4.4 4.8
Bias 0.001 0.002 -0.002 0.001 -0.000 0.001 0.002 0.002 -0.000 -0.002 -0.003 0.002

AR(1) H-R 4.3 4.6 4.4 4.7 5.1 4.5 4.4 4.2 4.3 4.3 4.7 4.8
SCB 3.7 5.1 4.8 NC 4.1 4.5 NC 4.6 4.1 NC 4.1 5.1
MIMA 4.7 5.1 4.6 3.8 4.6 4.7 4.9 4.7 4.1 3.3 4.6 4.6
Bias -0.000 -0.000 -0.001 -0.006 0.001 0.000 -0.001 0.001 0.001 0.001 0.000 0.001

EP H-R 4.9 4.6 5.2 4.7 4.5 4.6 4.7 4.2 4.7 4.6 5.1 4.4
SCB 4.3 5.0 5.2 NC 4.4 4.5 NC 3.8 5.0 NC 3.7 4.8
MIMA 4.7 4.3 4.9 3.5 4.7 5.0 4.8 4.7 4.5 3.0 3.9 4.0
Bias 0.000 0.001 0.001 0.003 -0.000 -0.003 -0.000 -0.001 -0.001 0.001 -0.000 -0.001

Note: 𝜌̄: mean pairwise correlation. Type I error more than Z0.975 standard errors above 5% level is in parentheses. Abbreviations: AR(1), first-order autoregressive
covariance structure; CS, compound symmetry covariance structure; EP, equipredicability covariance structure; NC, nonconvergence.
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value of 𝜃 such that the power was about 80% for the H-R test, given the true underlying distribution, Σ, 𝜌̄, and percentage
censoring.

3.2 Simulation results
Table 1 reports type I error for the three distributions for the H-R test, stratified Cox model with baseline adjustment, and
our proposed MI and model averaging and ANCOVA method. As shown in Table 1, the stratified Cox model analysis had
nonconvergence (NC) issues under several scenarios when the sample size was 12 and 24 subjects per sequence with 50%
censoring and had an inflated type I error when there were 24 subjects per sequence with 10% censoring, 𝜌̄ = 0.5 and CS
structure under exponential distribution. When the true distribution was gamma, the stratified Cox model analysis was
associated with inflated type I error under CS structure with 24 subjects per sequence and 𝜌̄ = 0.7 and 10% censoring and
with 48 subjects per sequence and 𝜌̄ = 0.7 and 50% censoring. The H-R test and our proposed model averaging method
controlled type I error throughout all the scenarios considered. Table 1 also reports the bias in the estimate of log 𝜃 using
our proposed method under the null hypothesis. The bias was negligible under all simulated scenarios.

Figures 1–3 show the power for the three different methods for N = 24 subjects per sequence and different com-
binations of percentage censoring and variance-covariance structure under the log-normal, exponential, and gamma
distributions, respectively; results for other sample sizes are provided in the Supporting Materials.
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FIGURE 1 Power comparison for the hierarchical rank (H-R) test, stratified Cox model (SCB), and proposed multiple imputation with
model averaging and analysis of covariance (MIMA) under a log-normal distribution and varying assumptions for the true variance structure
(compound symmetry (CS), first-order autoregressive (AR(1)), equipredictability (EP), mean pairwise correlation of baseline, and
posttreatment values across the two periods (𝜌̄ = 0.5, 0.7) and percentage censoring (10%, 50%)), with 24 subjects per sequence. Stratified Cox
model had nonconvergence issues under CS structure with 𝜌̄ = 0.5 and 50% censoring, and under EP structure with 𝜌̄ = 0.5 and 50%
censoring, 𝜌̄ = 0.7 and 10% censoring, and 𝜌̄ = 0.7 and 50% censoring, and hence power is not reported
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FIGURE 2 Power comparison for the hierarchical rank test (H-R), stratified Cox model (SCB), and proposed multiple imputation with
model averaging and analysis of covariance (MIMA) under an exponential distribution and varying assumptions for the true variance
structure (compound symmetry (CS), first-order autoregressive (AR(1)), equipredictability (EP), mean pairwise correlation of baseline, and
posttreatment values across the two periods (𝜌̄ = 0.5, 0.7) and percentage censoring (10%, 50%)), with 24 subjects per sequence. Stratified Cox
model had nonconvergence issues under EP structure with 𝜌̄ = 0.7 and 50% censoring, and hence power is not reported

As shown in Figure 1, when the true distribution was log normal, our proposed method always provided a higher
or similar power than the H-R test and stratified Cox model. For cases where the H-R test or stratified Cox failed to
deliver 80% power, our method was able to achieve power close to or above 80%. The increase in power using our method
was more significant under AR(1) and EP structures than under CS structure. The power gain compared with the H-R
test likely comes from the fact that the H-R test fails to utilize baseline information. Likewise, our proposed method
has a substantially higher power than the stratified Cox model that adjusts for baseline covariates in part because our
method makes better use of the baseline information. In addition, the model averaging aspect provides the flexibility of
assuming more than one distribution and further improves the efficiency of the analysis. Results from assuming only
one distribution, either log normal or Weibull, in the imputation step is more prone to model misspecification in the
imputation step.

Figure 2 displays the results when the true distribution was exponential. In this case, the true variance-covariance
structure and percentage censoring affected the relative performance of the considered methods. When the true structure
was CS, H-R test delivered higher power than the other considered methods. Of note, CS structure usually does not
capture the true correlation pattern in most real data examples, since it assumes equal correlation among all pairs of
with-subject event times, which has low plausibility. When the true structure was AR(1) or EP, which are a more realistic
representation of the correlation structure in real data applications, our method again showed a substantial power gain
compared with the H-R test and stratified Cox model under 50% censoring. When the percentage censoring was 10%, our
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FIGURE 3 Power comparison for the hierarchical rank test (H-R), stratified Cox model (SCB), and proposed multiple imputation with
model averaging and analysis of covariance (MIMA) under a gamma distribution and varying assumptions for the true variance structure
(compound symmetry (CS), first-order autoregressive (AR(1)), equipredictability (EP), mean pairwise correlation of baseline, and
posttreatment values across the two periods (𝜌̄ = 0.5, 0.7) and percentage censoring (10%, 50%)), with 24 subjects per sequence

method delivered similar power as the H-R test. For all the other scenarios, where the stratified Cox model did not have
NC issues, our proposed method was consistently more powerful than the stratified Cox model.

Finally, when the underlying distribution was gamma, our proposed method still provided higher power than the strat-
ified Cox model throughout all scenarios, but slightly lower power than the H-R test under CS structures, as shown in
Figure 3. Under AR and EP structures, using MI, model averaging and ANCOVA approaches delivered a more efficient
analysis than both the H-R test and stratified Cox model. Recall that the true distribution, gamma, is not included as
one of the candidate models in the imputation step; however, we are still able to provide a comparably efficient result.
Additionally, our proposed method is able to provide a point and CI estimate of the treatment effect, while the other two
methods do not.

Table 2 reports percentage bias and 95% C.I. coverage probability for log 𝜃 using our proposed method under the alter-
native hypothesis. Our method was able to control bias within 10% under log-normal and exponential distribution. When
the true distribution was gamma, it controlled bias within 10% under 10% censoring, and under 50% censoring, bias was
no larger than 11%. Importantly, the 95% C.I. coverage probability was maintained at or above the nominal level under
all the scenarios considered.

4 DATA APPLICATION

We apply the three methods considered to a 2×2 crossover clinical trial of an investigation drug. The trial recruited 40
subjects in total and randomly assigned 20 to the placebo then drug sequence and 20 to the drug then placebo sequence.
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TABLE 2 Percentage bias and 95% confidence interval coverage probability under the alternative hypothesis H1 ∶ 𝜃 ≠ 1 for
the estimate of log 𝜃 using the proposed method under log-normal, exponential, and gamma distributions (5000 simulations)

𝝆̄=𝟎 . 𝟓 𝝆̄=𝟎 . 𝟕
10% Censoring 50% Censoring 10% Censoring 50% Censoring

Distribution Σ Measure ∖ N/seq 12 24 48 12 24 48 12 24 48 12 24 48
Log-normal CS %Bias -4.9 -4.7 -3.2 -8.6 -7.9 -7.2 -4.1 -3.3 -4.0 -8.0 -8.3 -9.5

Coverage 95.3 94.0 94.3 95.6 94.4 94.4 95.3 94.8 95.1 96.6 95.0 94.9
AR(1) %Bias -4.5 -4.0 -4.1 -9.4 -8.2 -8.5 -2.2 -2.3 -2.5 -5.5 -6.1 -5.5

Coverage 95.2 94.9 94.6 95.4 94.7 94.4 95.2 95.3 94.5 96.8 95.8 95.4
EP % Bias -4.6 -4.8 -3.5 -9.3 -8.1 -7.3 -2.0 -5.0 -2.2 -5.5 -5.1 -5.7

Coverage 95.1 94.8 94.7 96.1 94.4 94.4 95.8 96.5 95.3 97.8 96.8 96.0
Exponential CS %Bias 2.1 1.1 -0.1 1.4 0.8 0.8 1.7 1.3 0.9 2.4 2.7 3.3

Coverage 95.0 95.2 94.7 97.0 95.3 95.1 95.0 95.3 94.2 96.6 96.2 95.6
AR(1) %Bias 0.6 1.8 0.4 2.2 3.1 2.9 1.4 1.2 1.3 3.9 5.9 5.7

Coverage 94.8 94.9 95.2 96.3 95.7 95.4 94.9 95.3 95.1 97.1 96.3 95.7
EP %Bias 1.9 0.9 -0.1 1.5 1.8 1.4 1.8 1.7 2.4 3.6 4.1 4.1

Coverage 95.3 95.2 94.8 96.6 95.1 95.0 95.1 95.2 95.0 97.5 97.0 97.1
Gamma CS %Bias -5.4 -3.8 -3.6 -8.5 -3.3 -4.2 -3.9 -3.8 -3.0 -11.5 -5.1 -3.8

Coverage 95.0 94.9 95.0 94.9 94.7 94.6 95.0 95.6 95.3 94.8 95.5 94.8
AR(1) %Bias -5.2 -3.9 -3.3 -7.0 -4.8 -4.6 -3.7 -2.6 -1.7 -10.4 -10.6 -10.0

Coverage 95.0 94.6 95.0 95.5 94.5 94.7 95.2 94.9 95.4 95.1 94.6 94.4
EP %Bias -5.5 -3.9 -2.8 -7.4 -4.0 -4.4 -2.9 -2.7 -1.9 -9.9 -9.7 -7.9

Coverage 94.8 94.9 95.3 95.1 94.7 94.6 95.3 94.7 94.7 95.3 94.5 95.4

Note: 𝜌̄: mean pairwise correlation. True values of 𝜃 used for all the simulated scenarios are provided in Table S1 in the Supporting Materials.
Abbreviations: AR(1), first-order autoregressive covariance structure; CS, compound symmetry covariance structure; EP, equipredicability covari-
ance structure.
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FIGURE 4 Kaplan-Meier curves for the time to a symptomatic cardiac-related event by treatment group from a 2×2 crossover trial; (A) is
for period 1 and (B) is for period 2
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TABLE 3 Event times (minutes) for a 10-minute treadmill test in a 2×2 crossover clinical trial

Placebo-drug sequence Drug-placebo sequence
Period 1 (placebo) Period 2 (drug) Period 1 (drug) Period 2 (placebo)

Subject X1 Y1 X2 Y2 Subject X1 Y1 X2 Y2

1 1.5 1 1 1.5 2 1 1 1 2.5
3 6 4 3.5 >10 4 6 >10 2.5 2.5
5 1 1 1.5 4.5 6 3 2 1 0.5
7 3.5 1.5 0.5 3 8 2.5 2.5 1.5 2
9 0.5 1 3.5 8 10 2 2.5 2.5 3
11 6 10 6 >10 12 1.5 4.5 2.5 1
13 0.5 0.5 1 >10 14 3.5 5.5 4.5 9.5
15 1 1 1 2.5 16 1 2 2 >10
17 1.5 1 0.5 0.5 18 6 >10 5 3.5
19 1 1.5 2 4 20 2 3 1.5 1.5
21 5 5.5 3 1.5 22 1.5 2.5 1.5 0.5
23 2.5 5 6 4.5 24 1.5 3.5 2.5 3
25 5 5.5 4.5 6 26 3.5 9 6 6
27 1 2 2.5 8.5 28 2 5.5 3.5 8
29 5 5.5 3.5 2 30 2.5 2.5 1 0.5
31 0.5 1 2 7.5 32 2.5 3.5 2.5 4
33 5 4 2 2 34 5.5 3 1 0.5
35 0.5 0.5 1 1.5 36 3 5.5 5 0.5
37 1.5 2 3 3 38 0.5 1 1 5.5
39 6 4 1.5 0.5 40 2.5 5 2.5 0.5
Median 1.5 1.75 2 3.5 Median 2.5 3.25 2.5 2.5

Note: X1: baseline response in period 1. Y1: post-treatment response in period 1. X2: baseline response in period 2.
Y2: post-treatment response in period 2.

The outcome variable was time until a symptomatic cardiac-related event of interest during a 10-minute treadmill walking
test. Each subject also had a measurement at baseline before taking the treatment. Figure 4 displays the Kaplan-Meier
curves for posttreatment event times for placebo and drug in period 1 and period 2, separately.

The H-R test delivers a p-value of 0.052, indicating that there is not enough evidence at the two-tailed 5% level of
significance to show a difference between the drug and placebo in delaying the event of interest. On the other hand,
stratified Cox model adjusting for period-specific baseline and our proposed method deliver a p-value of 0.020 and 0.005,
respectively. The ratio of geometric mean of time to the cardiac-related event for patients taking the drug to patients on
placebo was estimated to be 1.67, with 95% C.I. of (1.18, 2.35). The raw data from this trial is provided in Table 3, and
R code used to generate the analysis results for all the three methods is provided in the Supporting Materials. We also
provided histograms of the imputed values for each of the 6 subjects with a censored time point from the log-normal and
Weibull imputation models in the Supporting Materials (Figure S.2).

5 DISCUSSION

While there are many methods for analyzing crossover trials with continuous endpoints, there are few studying crossover
trials with censored time-to-event outcomes, which are often seen in practice. In this paper, we have proposed a
method using MI, assuming two candidate parametric event time models, to impute censored posttreatment values.
For each imputed data set, ANCOVA, with difference in period-specific baseline responses as a covariate, is applied to
log-transformed event times to estimate the log treatment ratio of geometric means. Frequentist model averaging with
AIC weighting in conjunction with Rubin's combination rule for MI is used for overall estimation and inference. We
showed that, by utilizing baseline information, our method provided a more or as efficient result than some other existing
methods, including H-R test and stratified Cox model, across different combinations of variance-covariance structures,
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percentage censoring, and sample sizes. By using model averaging, we are able to provide a more flexible method than
assuming only one distribution in the imputation step, which can be subject to misspecification of the true underlying dis-
tribution. Furthermore, the H-R approach does not provide a point estimator, and the underlying target parameter relies
on the censoring distributions. Our regression-based method delivers an estimated ratio of geometric means of event
times for one treatment relative to the other with small or no bias and adequate 95% C.I. coverage. The ratio of geometric
means is a useful parameter in that it is equivalent to the ratio of median event times under a log-normal distribution and
other distributions that are symmetric on the log scale.

The proposed method was motivated by clinical settings with repeatably observable time to events, where censored
events were the minority. In other settings where censoring rates are high, the method might not be entirely appropriate.
For our model averaging approach, we only used two candidate models, log normal and Weibull, to impute censored
posttreatment values. More distributions can readily be used. The candidate distributions should include those that cover
a spectrum of anticipated plausible shapes of the survival distribution for the outcome of interest. The relative success of
our method, like other applications of MI, is not expected to be strong if the imputation model is grossly misspecified. We
showed that using two candidate models provided efficient results with little bias for the settings considered, and thus,
more candidate models could potentially improve these results. Lastly, as alluded to earlier, our research was motivated
by applications where baseline values are not censored; for applications where that is not always the case, an extension
of our method can be considered, but that requires further research and development.
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