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Medical studies that depend on electronic health records (EHR) data are often
subject to measurement error, as the data are not collected to support research
questions under study. These data errors, if not accounted for in study analyses,
can obscure or cause spurious associations between patient exposures and dis-
ease risk. Methodology to address covariate measurement error has been well
developed; however, time-to-event error has also been shown to cause significant
bias, but methods to address it are relatively underdeveloped. More generally, it
is possible to observe errors in both the covariate and the time-to-event outcome
that are correlated. We propose regression calibration (RC) estimators to simul-
taneously address correlated error in the covariates and the censored event time.
Although RC can perform well in many settings with covariate measurement
error, it is biased for nonlinear regression models, such as the Cox model. Thus,
we additionally propose raking estimators which are consistent estimators of the
parameter defined by the population estimating equation. Raking can improve
upon RC in certain settings with failure-time data, require no explicit modeling
of the error structure, and can be utilized under outcome-dependent sampling
designs. We discuss features of the underlying estimation problem that affect the
degree of improvement the raking estimator has over the RC approach. Detailed
simulation studies are presented to examine the performance of the proposed
estimators under varying levels of signal, error, and censoring. The methodology
is illustrated on observational EHR data on HIV outcomes from the Vanderbilt
Comprehensive Care Clinic.
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1 INTRODUCTION

Biomedical research relies increasingly on electronic health records (EHR) data, either as the sole or supplemental source
of data, due to the vast amount of data these resources contain and their relatively low cost compared with prospectively
collected data. However, EHR data and other large cohort databases have been observed to be error-prone. These errors,
if not accounted for in the data analysis, can bias associations of patient exposures and disease risk. There exists a large
body of literature describing the impact of and methods to correct for covariate measurement error;1 however, much less
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attention has been given to errors in the outcome. For linear models, independent random (classical) errors in the outcome
variable do not bias regression estimates; however, errors correlated with either predictors in the model or errors in those
predictors could bias associations. For nonlinear models, even classical outcome errors can bias estimated associations of
interest.1 There are many examples in clinical research where the outcome of interest relies on an imprecisely measured
event time. Researchers studying the epidemiology of chronic conditions may enroll subjects sometime after an initial
diagnosis, and so research questions focused on the timing of events post diagnosis may need to rely on patient recall
or chart review of electronic medical records for the date of diagnosis, both of which are subject to error. Errors in the
time origin can be systematic, as subject characteristics can influence the amount of error in recall. Methods to handle a
misclassified outcome have been developed for binary outcomes2-4 and discrete failure time data,5-7 where estimates of
sensitivity and specificity can be incorporated into the bias correction. However, methods to handle errors in a continuous
failure time have largely been ignored.

Additionally, as more and more observational studies utilize data primarily collected for nonresearch purposes (eg,
administrative databases or electronic health records), it is increasingly common to have errors in both the outcome
and exposures that are correlated. For example, in some observational studies of HIV/AIDS, the date of antiretroviral
therapy (ART) initiation has been observed to have substantial errors.8,9 These errors can lead to errors in event times,
defined as time since ART initiation, and errors in exposures of interest, such as CD4 count at ART initiation. Further-
more, certain types of records are often more likely to have errors (eg, records from a particular study site), records with
errors often tend to have errors across multiple variables, and the magnitude of these errors cannot be assumed uncorre-
lated. Ignoring correlated outcome and exposure errors could lead to positive or negative bias in estimates of regression
parameters.

In some settings, data errors can be corrected by retrospectively reviewing and validating medical records; however,
this is expensive and time-consuming to do for a large number of records. Instead, we can perform data validation on a
subset of selected records and use this information to correct estimates based on the larger, unvalidated data set. In this
article, we propose regression calibration and raking estimators as two methods to correct the bias induced from such
correlated errors by incorporating information learned in a validation subset to the large unvalidated data set.

Regression calibration (RC), introduced by Prentice,10 is a method to address covariate measurement error that is
widely used due to ease of implementation and good numerical performance in a wide range of settings. Although most
RC methods assume measurement error in covariates only, Shaw et al11 examined a way to apply RC to correlated errors
in a covariate and a continuous outcome; to date these methods have not addressed correlated errors between failure time
outcomes and exposures.

Raking is a method in survey sampling that makes use of auxiliary information available on the population to
improve upon the Horvitz-Thompson (HT) estimator for regression parameters in two-phase designs. The HT estima-
tor is known to be inefficient12 but raking improves statistical efficiency, without changing the target of inference, by
adjusting the standard HT weights by tuning them to auxiliary variables. Raking also takes advantage of the known
sampling probabilities with validation studies such as those considered in this article. These survey sampling ideas,
while not new, have not been carefully studied in the measurement error setting. Breslow et al13 considered rak-
ing estimators for modeling case-cohort data with missing covariates. Lumley et al14 considered a raking estimator
using simulated data in a covariate measurement error context with a validation subset. In this article, we con-
sider raking estimators for more general settings allowing for errors in the covariate and a time-to-event outcome,
including misclassification, and discuss various possibilities for the auxiliary variables, how different choices affect
the degree of improvement over the HT estimator, and ways to implement these methods using standard statistical
software.

Our contributions in this article are 2-fold. First, we develop regression calibration estimators to address both
censored event time error alone and correlated covariate and censored event time errors together. To our knowl-
edge, no RC estimators have been developed for these settings. Second, we develop raking estimators that are con-
sistent and, in some settings, improve upon the RC estimators. These methods are important given the increased
use of error-prone data in biomedical research and the paucity of methods that simultaneously handle errors in
covariates and times-to-event. The rest of the article proceeds as follows. We present our survival time model
and the considered measurement error frameworks in Section 2. Sections 3 and 4 present the proposed regression
calibration and raking methods, respectively. Section 5 compares the relative performance of the proposed esti-
mators with simulation studies for various parameter settings and error distributions. In Section 6, we apply our
methods to an HIV cohort and ascertain their robustness to misclassification. We conclude with a discussion in
Section 7.
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2 TIME-TO-EVENT MODEL AND ERROR FRAMEWORK

We consider the Cox proportional hazards model. Let Ti and Ci, be the failure time and right censoring time, respectively,
for subjects i= 1, … , n on a finite follow-up time interval, [0, 𝜏]. Define Ui =min(Ti, Ci) and the corresponding fail-
ure indicator Δi = I(Ti ≤ Ci). Let Y i(t)= I(Ui ≥ t) and Ni(t) = I(Ui ≤ t,Δi = 1) denote the at-risk indicator and counting
process for observed events, respectively. Let Xi be a p-dimensional vector of continuous covariates that are measured
with error and Zi a q-dimensional vector of precisely measured discrete and/or continuous covariates that may be cor-
related with Xi. We assume Ci is independent of Ti given (Xi, Zi) and that (Ti, Ci, Xi, Zi) are i.i.d. Let the hazard rate for
subject i at time t be given by 𝜆i(t) = 𝜆0(t) exp(𝛽′X Xi + 𝛽′ZZi), where 𝜆0(t) is an unspecified baseline hazard function. We
consider 𝛽X to be the parameter(s) of interest, which is estimated by solving the partial likelihood score for 𝛽 = (𝛽X , 𝛽Z).

n∑
i=1

∫
𝜏

0

{
{Xi,Zi}′ −

n−1 ∑n
j=1 Yj(t){Xj,Zj}′ exp(𝛽′X Xj + 𝛽′ZZj)

n−1 ∑n
j=1 Yj(t) exp(𝛽′X Xj + 𝛽′ZZj)

}
dNi(t) = 0. (1)

2.1 Additive measurement error structure

Oftentimes, errors seen in electronic health records data or other data sets used for observational studies will not be simple
random error and will depend on other variables in the data set. For example, when the time-to-event error is due to a
mismeasured time origin, this timing error can cause correlated errors in the baseline observations for exposures that
are associated with the true survival outcome. In addition, errors induced in the exposures and censored time-to-event
outcome can vary systematically with subject characteristics that could make a subject’s record more error-prone. Thus,
we consider the error setting involving additive systematic and random error in both the covariates and time-to-event.

Instead of observing (X ,Z,U,Δ), we observe (X⋆,Z,U⋆,Δ), where

X⋆ = 𝛼0 + 𝛼′
1X + 𝛼′

2Z + 𝜖, (2)

U⋆ = U + 𝛾0 + 𝛾 ′1X + 𝛾 ′2Z + 𝜈 = U + 𝜔. (3)

Note that X and Z in the above formulation do not necessarily represent the full vector of covariates (eg, some elements
in the vectors 𝛼1, 𝛼2, 𝛾1, and 𝛾2 may be 0). We assume that 𝜖 and 𝜈 are mean 0 random variables with variance Σ𝜖𝜖 and
Σ𝜈𝜈 , respectively, and are independent of all other variables with the exception that we allow their covariance, Σ𝜖𝜈 , to be
nonzero. We refer to this setting as the additive error structure. In this setting the error in the observed censored failure
time U* is a mistiming error but there are no errors in the event indicator Δ.

2.2 More general error structure

We will see in the sections to follow that raking estimators, contrary to regression calibration estimators, do not require
modeling the measurement error structure explicitly. Thus, we will also consider a more general error model that also
involves a misspecified event. Whereas the additive error structure in Section 2.1 might be expected in scenarios involv-
ing only an error-prone baseline time (eg, self-reported baseline time), the general error model relaxes this assumption to
allow the timing of the failure, and thus the failure indicator, to be error-prone as well. Instead of observing (X ,Z,U,Δ),
one observes (X⋆,Z,U⋆,Δ⋆), where errors in the event may be coming from both a mistiming error and also from misclas-
sification of the event indicator. Note that with this error structure we also make no assumptions regarding the additivity
of errors or their correlation with other variables.

2.3 Two-phase design

We consider the two-phase design in which the true, error-free variables are measured retrospectively for a subsample of
subjects at the second phase. Let Ri be an indicator for whether subject i= 1, … , n is selected to be in the second phase
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and let 0 < 𝜋i ≤ 1 be their known sampling probability. In general, the sampling probabilities are known in validation
studies based on observational data utilizing EHR, which are becoming increasingly common. This sampling scheme
also accommodates scenarios where the subsample size is fixed (eg, simple random sampling) and where the subsample
size is random (eg, Bernoulli sampling), as well as stratified designs (eg, case-cohort). We assume that at phase one, the
random variables (X⋆

i ,Zi,U⋆
i ,Δi) (or (X⋆

i ,Zi,U⋆
i ,Δ

⋆
i ) in a setting with misclassification) are observed for n subjects as a

random sample from the population. At phase two, m<n subjects are selected from the phase one population according
to the aforementioned sampling probability and the random variables (Xi, Ui) (or (Xi,Ui,Δi)) are additionally observed
for those subjects. From this point on, we refer to the phase two subjects as the validation subset.

3 PROPOSED REGRESSION CALIBRATION METHODOLOGY

In this section, we give a brief introduction to the original RC and risk set regression calibration (RSRC) methods for
classical covariate measurement error and then develop their extensions for our considered error settings that include
error in the censored outcome alone and correlated errors in the censored outcome and covariates. Under regularity
conditions similar to those in Andersen and Gill,15 the RC and RSRC estimators developed in this section for error in the
censored outcome and potentially correlated errors in the censored outcome and covariates are asymptotically normal,
although not necessarily consistent for 𝛽. The proof is similar to that in the covariate error only setting, which was shown
in Wang et al.16 For more detail see Appendix A of the Supplementary Materials.

3.1 Regression calibration for covariate error

Prentice10 introduced the regression calibration method for the setting of Cox regression and classical measurement
error in the covariate. Shaw and Prentice17 applied regression calibration for the covariate error structure assumed in
Section 2.1. The idea of regression calibration is to estimate the unobserved true variable with its expectation given
the data. Prentice10 showed that under the independent censoring assumption, the induced hazard function based
on the error-prone data is given by 𝜆(t;X⋆,Z) = 𝜆0(t) exp(𝛽′ZZ)E(exp{𝛽′X X}|X⋆,Z,U ≥ t). He then showed that for rare
events and moderate 𝛽X , E(exp{𝛽′X X}|X⋆,Z,U ≥ t) ≈ exp(𝛽′X E(X|X⋆,Z)). E(X |X⋆, Z) can be estimated using the following
first-order approximation

E(X|X⋆,Z) = 𝜇X +
[
ΣXX⋆ ΣXZ

][ΣX⋆X⋆ ΣX⋆Z

ΣZX⋆ ΣZZ

]−1 [
X⋆ − 𝜇X⋆

Z − 𝜇Z

]
, (4)

where the validation subset is used to calculate the moments involving X (see Shaw and Prentice17). Define X̂ =
E(X|X⋆,Z; 𝜁 x), where 𝜁 x is the vector of nuisance parameters in (4) estimated from the data. X̂ is then imputed for X in
the partial likelihood score (1) instead of the observed X⋆ to solve for 𝛽, which yields the corrected estimates.17 Note, for
simplicity we generally suppress the notation of the dependence of terms such as E(X |X⋆, Z) on the nuisance parameter
𝜁x, unless it is important for clarity, such as to refer to its estimator E(X|X⋆,Z; 𝜁 x).

3.2 Proposed regression calibration extension for time-to-event error

Assume only the time-to-event error structure given in (3) in Section 2.1, that is, we observe (X ,Z,U⋆,Δ). Given the
additivity of the outcome errors in (3), we can take the expectation of the censored event time, U⋆, given the observed
covariates and rearrange to obtain E(U|X ,Z) = E(U⋆|X ,Z) − E(𝜔|X ,Z). We use E(𝜔|X ,Z) to correct U⋆ and then impute
as our estimate of the true censored event time. Since the true E(𝜔|X ,Z) is unknown, we can estimate it using the following
first-order approximation

E(𝜔|X ,Z; 𝜁𝜔) = 𝜇𝜔 +
[
Σ𝜔X Σ𝜔Z

][ΣXX ΣXZ

ΣZX ΣZZ

]−1 [
X − 𝜇X

Z − 𝜇Z

]
, (5)
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where the validation subset is used to calculate the moments involving 𝜔 and 𝜁𝜔 is the vector of nuisance parameters in
(5). Adjusting U⋆ to have the correct expectation gives us Û = U⋆ − E(𝜔|X ,Z; 𝜁𝜔), which we use instead of U⋆ to solve
the partial likelihood score (1) for the corrected 𝛽 estimates.

3.3 Proposed regression calibration extension for covariate and time-to-event error

Assume the additive error structure for both X⋆ and U⋆ in Section 2.1, that is, we observe (X⋆,Z,U⋆,Δ). Given the addi-
tivity of the outcome errors in (2.3), we can take the expectation of the censored event time, U⋆, given the observed
covariates and rearrange to obtain E(U|X⋆,Z) = E(U⋆|X⋆,Z) − E(𝜔|X⋆,Z). We use E(𝜔|X⋆,Z) to correct U⋆ and then
impute as our estimate of the true censored event time. Due to the error-prone X⋆, we impute E(X |X⋆, Z) for X as well,
similar to Prentice.10 Given that the true E(X|X⋆,Z; 𝜁x) is unknown, we estimate it using the same first-order approxi-
mation described in Section 3.1. In addition, we estimate E(𝜔|X⋆,Z; 𝜁𝜔) using a similar first-order approximation to that
described in Section 3.2, constructed using the observed data (X⋆, Z), giving us Û = U⋆ − E(𝜔|X⋆,Z; 𝜁𝜔) as the estimate
of the true censored time-to-event. Thus, we impute Û and X̂ = E(X|X⋆,Z; 𝜁 x) in the partial likelihood score (1) instead
of the observed U⋆ and X⋆ and solve for 𝛽 to obtain our corrected estimates.

3.4 Proposed risk set regression calibration (RSRC) extension

We also considered improving our regression calibration estimators by applying the idea of recalibrating the mismeasured
covariate within each risk set developed by Xie et al18 for classical measurement error and extended to the covariate error
model in Section 2.1 by Shaw and Prentice.17 Since the risk set membership likely depends on subject specific covariates
whose distribution is changing over time, we may be able to obtain better RC estimates by performing the calibration
at every risk set as events occur. In particular, this method was shown to decrease the bias significantly for the setting
of covariate measurement error when the hazard ratio is quite large, a case in which ordinary RC has been observed
to perform poorly. Specifically for covariate measurement error, the risk set regression calibration estimator solves the
partial likelihood score (1) using X̂(t) instead of X , where X̂(t) is recalculated using RC at each event time using data from
only those individuals still in the risk set at that event time.

In the presence of time-to-event error, however, the necessary moments needed to estimate the conditional expecta-
tions in Sections 3.2 and 3.3 at the ith individuals’ censored event time will be incorrect due to the fact that the risk sets
defined by U⋆ will not be the same as those defined by U, leading to biased estimates. Thus, to extend the RSRC idea to
the settings of error in the censored outcome and correlated error in the covariate and censored outcome, we propose a
two-stage RSRC estimator where the first stage involves obtaining the estimate Û using ordinary RC. The second stage
then assumes Û is the observed event time instead of U⋆ and recalibrates Û and X⋆ at risk sets defined by Û using the
methods described in Sections 3.2 and 3.3.

4 PROPOSED GENERALIZED RAKING METHODOLOGY

In this section, we develop design-based estimators by applying generalized raking (raking for short),19,20 which leverages
the error-prone data available on the entire sample to improve the efficiency of consistent estimators calculated using
the error-free validation subset. We give a brief overview of the general raking method and then propose our estimators
for the correlated measurement error settings under consideration. Under suitable regularity conditions, the proposed
raking estimators have been shown to be

√
n consistent, asymptotically normal estimators of 𝛽 for all two-phase designs

described in Section 2.3. For the proof, see Saegusa and Wellner.21

4.1 Generalized raking overview

Let Pi(𝛽) denote the population score equations for the true underlying Cox model with corresponding target parameter
𝛽, the log hazard ratio we would estimate if we had error-free data on the full cohort. Then the HT estimator of 𝛽 is given
by the solution to

∑n
i=1

Ri
𝜋i

Pi(𝛽) = 0, which is known to be a consistent estimator of 𝛽. Consider Ai, a vector of auxiliary
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variables that are available for everyone at phase one and are correlated with the phase two data. Raking estimators modify
the design weights wi,des = 1

𝜋i
to new weights wi,cal =

gi
𝜋i

such that they are as close as possible to wi, des while
∑n

i=1 Ai is
exactly estimated by the validation subset. Thus, given a distance measure d(., .), the objective is

minimize
n∑

i=1
Rid

(
gi

𝜋i
,

1
𝜋i

)

subject to
n∑

i=1
Ai =

n∑
i=1

Ri
gi

𝜋i
Ai. (6)

Note that the constraints above are known as the calibration equations. Deville et al20 give several options for choosing
the distance function, and the resulting constrained minimization problem can be solved to yield a solution for gi. The
generalized raking estimator is then defined as the solution to

n∑
i=1

Ri
gi

𝜋i
Pi(𝛽) = 0. (7)

4.2 Proposed raking estimators

For our setting of the Cox model, we use the distance function d(a, b) = a log
(

a
b

)
+ (b − a) in the objective function of

(6) to ensure positive weights. Solving the constrained minimization problem for gi using 𝜆, a p+ q-dimensional vector of
Lagrange multipliers, then yields gi = exp(−𝜆̂′Ai). After plugging in gi to the calibration equations, Deville and Särndal19

show that the solution for 𝜆 satisfies

𝜆̂ = B̂−1
( N∑

i=1

Ri

𝜋i
Ai −

N∑
i=1

Ai

)
+ Op(n−1),

where B̂ =
∑N

i=1
Ri
𝜋i

A′
iAi. Finally, we construct auxiliary variables, Ai, that yield efficient estimators.

Breslow et al13 derived the asymptotic expansion for the solution to (7) and showed that the optimal auxiliary
variable is given by Aopt

i = E(𝓁̃0(Xi,Zi,Ui,Δi)|V), where 𝓁̃0(Xi,Zi,Ui,Δi) denotes the efficient influence function contri-
butions from the population model had the true outcome and covariates been observed for everyone in phase one and
V = (X⋆,Z,U⋆,Δ) (or (X⋆,Z,U⋆,Δ⋆) in a setting with misclassification). However, calculating Aopt

i involves a condi-
tional distribution of unobserved variables and thus is generally not practically obtainable. Kulich and Lin22 proposed a
“plug-in” method that approximates this conditional expectation by using the influence functions from a model fit using
phase one data. Specifically, they proposed to use the phase two data to fit models that impute the missing information
from the phase one data only and then to obtain the influence functions from the desired model that uses imputed val-
ues in place of the missing data. They further proposed using a jackknife approximation of the influence function, a
delta-beta-type residual typically available in most software programs. We will propose two different imputations for the
missing data, which will lead to two different choices of Ai that approximate Aopt

i .
The first proposed approximation of Aopt

i is given by AN,i = 𝓁̃0(X⋆
i ,Zi,U⋆

i ,Δi), the influence function for the naive
estimator that used the error prone data instead of the unobserved true values. One can estimate AN, i empirically using

𝓁̃0(X⋆
i ,Zi,U⋆

i ,Δi) ≈ Δi

{
{X⋆

i ,Zi}′ −
S(1)⋆(𝛽, t)
S(0)⋆(𝛽, t))

}
−

n∑
i=1

∫
𝜏

0

exp(𝛽′X X⋆
i + 𝛽′ZZi)

S(0)⋆(𝛽, t)

{
{X⋆

i ,Zi}′ −
S(1)⋆(𝛽, t)
S(0)⋆(𝛽, t))

}
dN⋆

i (t),

where S(r)⋆(𝛽, t) = n−1 ∑n
j=1 Y⋆

j (t){X⋆
j ,Zj}′⊗r exp(𝛽′X X⋆

j + 𝛽′ZZj) (a⊗1 is the vector a and a⊗0 is the scalar 1). For measure-
ment error settings including an error-prone failure indicator, we approximate Aopt

i with AN,i = 𝓁̃0(X⋆
i ,Zi,U⋆

i ,Δ
⋆
i ).
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The second proposed approximation of Aopt
i is given by ARC,i = 𝓁̃0(X̂ i(𝜁 x),Zi,Ûi(𝜁𝜔),Δi), that is, the influence function

for the target estimator that uses the calibrated estimates (X̂ i(𝜁 x),Ûi(𝜁𝜔)) in place of the unobserved true data (Xi, Ui).
One can again use the empirical approximation

𝓁̃0(X̂ i(𝜁 x),Zi,Ûi(𝜁𝜔),Δi) ≈ Δi

{
{X̂ i(𝜁 x),Zi}′ −

Ŝ(1)(𝛽, 𝜁 , t)
Ŝ(0)(𝛽, 𝜁 , t))

}

−
n∑

i=1
∫

𝜏

0

exp(𝛽′X X̂i(𝜁 x) + 𝛽′ZZi)

Ŝ(0)(𝛽, 𝜁 , t)

{
{X̂ i(𝜁 x),Zi}′ −

Ŝ(1)(𝛽, 𝜁 , t)
Ŝ(0)(𝛽, 𝜁 , t))

}
dN̂i(t; 𝜁𝜔),

where Ŝ(r)(𝛽, 𝜁 , t) = n−1 ∑n
j=1 Ŷj(t; 𝜁𝜔){X̂ j(𝜁 x),Zj}′⊗r exp(𝛽′X X̂j(𝜁 x) + 𝛽′ZZj) (a⊗1 is the vector a and a⊗0 is the scalar

1). For measurement error settings including an error-prone failure indicator, we approximate Aopt
i with ARC,i =

𝓁̃0(X̂ i(𝜁 x),Zi,Ûi(𝜁𝜔),Δ⋆
i ). Thus, the two proposed raking estimators are:

1. Generalized raking naive (GRN): solution to (7) using AN, i
2. Generalized raking regression calibration (GRRC): solution to (7) using ARC, i,

where both estimators utilize gi = exp(−𝜆̂′Ai).

The efficiency gain from the raking estimator over the HT estimator depends on the correlation between the auxiliary
variables and the target variables. Breslow and Wellner23 showed that the variance of HT parameter estimates is the sum
of the model-based variance due to sampling from an infinite population with no missing data and the design-based
variance resulting from estimation of the unknown full cohort total of efficient influence function contributions. Thus,
we consider 𝓁̃0(Xi,Zi,Ui,Δi) to be our target variables. We expect the regression calibration estimators to be less biased
than the naive estimators and therefore conjecture that ARC would be more highly correlated with Aopt than AN . Note that
in general, when the parameter of interest is a regression parameter, choosing the auxiliary variables to be the observed,
error-prone variables will not improve efficiency. For more details, see chapter 8 of Lumley.24

In addition, the raking estimators share a close relationship with the augmented inverse probability weighted (AIPW)
estimators proposed by Robins et al.12 The class of AIPW estimators studied by Robins et al12 contains all regular asymp-
totically linear estimators consistent for the design-based parameter of interest, including the raking estimators. The
class of raking estimators, however, includes all of the most efficient AIPW estimators.14 Thus, raking estimators are
asymptotically efficient among design-based estimators and can provide simple, easy to compute AIPW estimators.

4.3 Calculating raking estimators

Instead of explicitly calculating AN, i and ARC, i with the influence function formulas given above, we propose to utilize
standard software to calculate the Ai so that practitioners may easily implement these methods. In R, the influence func-
tions can be approximated with negligible error using the dfbeta (delta-beta)-type residual in the resid function. Thus, the
raking estimates can be computed as follows:

1. Fit a candidate Cox model using all phase one subjects.
2. Construct the auxiliary variables Ai as imputed dfbetas from the model fit in step 1.
3. Estimate regression parameters 𝛽 using weights raked to Ai by solving (7).

For step 1, we consider the naive Cox model using the error-prone data (GRN) and the regression calibration approach
described in Section 3 (GRRC). For step 3, we utilize the survey package by Lumley25 in R, which provides standard
software for obtaining raking estimates.

5 SIMULATION STUDIES

We examined the finite sample performance of our proposed RC, RSRC, GRRC, and GRN estimators through simulation
for the error framework described in Section 2. These four estimators were compared with those from the true model,
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a Cox proportional hazards regression model fit with the true covariates and event times, a naive Cox model fit with
the error-prone covariates and/or error-prone censored event times, and the complete-case estimator using only the true
covariates and event times in the validation subset. We note that unless noted otherwise, all validation subsets were
selected as simple random samples with known sampling probability, meaning the complete-case estimator is equivalent
to the HT estimator. We additionally consider validation subsets sampled using a case-control design to compare the per-
formance of the methods under outcome-dependent sampling designs. Following Section 2.1, we considered the additive
error structure with correlated covariate and time-to-event error. In addition to this case, we also considered the censored
outcome error only setting. We further considered correlated covariate and censored outcome error under the special
case where the covariates are only subject to random error, namely classical measurement error ((𝛼0, 𝛼2) = 0⃗; 𝛼1 = 1⃗). In
addition, we considered the general error structure described in Section 2.2, where there exists errors in the time-to-event
that result from mistiming as well as misclassification in addition to additive covariate error. We present %biases, average
bootstrap standard errors (ASE) for the four proposed estimators or average model standard errors (ASE) for the naive
and complete case estimators, empirical standard errors (ESE), mean square errors (MSE), and 95% coverage probabili-
ties (CP) for varying values of the log hazard ratio 𝛽X , %censoring, and error variances and covariances. We additionally
present type 1 error results for 𝛽X = 0 and 𝛼 = .05.

5.1 Simulation setup

All simulations were run 2000 times using R version 3.4.2. The error-prone covariate X was generated as a stan-
dard normal distribution and the error-free covariate as Z ∼N(2, 1), with 𝜌X ,Z = 0.5. We set the true log hazard ratios
to be 𝛽X ∈ {log(1.5), log(3)}, which we refer to as moderate and large, respectively, and 𝛽Z = log(2). The true sur-
vival time T was generated from an exponential distribution with rate equal to 𝜆0 exp(𝛽X X + 𝛽ZZ), where 𝜆0 = 0.1.
We then simulated 25% and 75% censoring, which we refer to as common and rare event settings, respectively, by
generating separate random right censoring times for each 𝛽X to yield the desired %censored event times. Censor-
ing times were generated as Uniform distributions with length 2 and 0.4 for each %censored time, respectively, to
mimic studies of different lengths. For the error terms 𝜖 and 𝜈, we considered normal distributions with means 0,
variances (Σ𝜖𝜖 = 𝜎2

𝜖 ,Σ𝜈𝜈 = 𝜎2
𝜈 ) ∈ {0.5, 1}, and (Σ𝜖𝜈 = 𝜎𝜖𝜈) ∈ {0.15, 0.3}, resulting in correlations ranging from 0.15 to

0.60. The error-prone covariate and censored event time were generated with parameters (𝛼0, 𝛼1, 𝛼2) = (0, 0.9,−0.2) and
(𝛾0, 𝛾1, 𝛾2) = (𝜎𝜈 × 3, 0.2,−0.3). The choice of 𝛾0 is such that the error-prone time is a valid event time (ie, greater than
zero) with high probability. The few censored event times that were less than 0 were reflected across 0 to generate valid
outcomes.

For the error terms 𝜖 and 𝜈, we also considered a mixture of a point mass at zero and a shifted gamma distribution
with the same means and covariances as the normal distributions to determine the robustness of our methods to non-
normality of errors. Note that while the RC and RSRC estimators are expected to be challenged by such departures from
normality, the raking estimators are not affected by the structure of the measurement error other than by the strength of
the correlation between the auxiliary variables and the target variables. The mixture probability was set to be 0.5 for both
covariate and outcome error.

For the misclassification example, we set 𝛽X = log(1.5), 𝜎2
𝜖 = 𝜎2

𝜈 = 0.5, 𝜎𝜖𝜈 = 0.15, with normally distributed error
terms and 75% censoring. In addition, the sensitivity and specificity for Δ were set to 90% by adding Bernoulli error
(p= 0.10). For all simulations, we set the number of subjects to be 2000. Unless noted otherwise, we selected the valida-
tion subsets as simple random samples of size 200, or 𝜋i = 𝜋 = 0.1. We additionally considered validation subsets selected
using case-control sampling where 100 cases and 100 controls were randomly sampled. The data example in Section 6
additionally considers selecting the validation subsets using unequal sampling probabilities via outcome-dependent
sampling.

Standard errors for the RC, GRRC, and GRN estimates were obtained using the bootstrap method with bootstrap
sampling stratified on the validation subset membership and using 300 bootstrap samples. Note that while the raking
estimators have known sandwich variance estimators for the asymptotic variance, we used the bootstrap to calculate
standard errors and coverage probabilities (see Appendix B of the Supplementary Materials for an empirical comparison).
The RSRC standard errors were also calculated similarly using the bootstrap; however, only 100 bootstrap samples were
utilized due to its computational burden. In addition, the RSRC estimators were recalibrated at deciles of the observed
event times.



OH et al. 639

5.2 Simulation results

For all discussed tables, we observed that the naive estimates had very large bias with 95% coverage hovering around 0%.
By contrast, the complete case estimates were nearly unbiased for all settings discussed, but suffered from large standard
errors, particularly for rare event settings when there were only a few subjects who had events in the validation subset.
The coverage of the complete case estimates was near 95% for all settings. In the discussion of simulation results to follow,
we focus on the four proposed estimators and how their relative performance differed across settings.

Table 1 presents the relative performance for estimating 𝛽X in the presence of the time-to-event error described in
Section 2.1 and no covariate error, with 𝜈 ∼ N(0, 𝜎2

𝜈 ). The RC estimates had moderate to large bias (−13% to −33%) and
coverage ranging from 0.87 to 0, depending on if 𝛽X was moderate or large. We observed around a 50% decrease in bias for
the RSRC estimates compared with RC for moderate 𝛽X and common events and a range of 5% to 30% bias reduction for
other settings, with coverage around 87% to 93% and 0% for moderate and large 𝛽X , respectively. The reduction in bias for
the RSRC estimates resulted in a lower MSE for all settings except under moderate 𝛽X and rare events, a setting in which
RC is known to perform well. Both raking estimates were nearly unbiased across all parameter settings, had uniformly
lower standard errors than the complete case estimates, and had coverage near 95%. Interestingly, the performances of
the GRRC and GRN estimators were virtually indistinguishable, with similar bias, standard errors, MSE, and coverage.
Overall, RSRC had the lowest MSE for all moderate 𝛽X settings whereas the raking estimates had the lowest MSE for all
large 𝛽X settings.

Tables 2 and 3 consider the relative performance for estimating a moderate log hazard ratio in the setting of correlated
additive errors in the outcome and covariate as described in Section 2.1 for normally distributed error terms and com-
mon and rare events, respectively. The RC estimates had relatively moderate bias (−13% to −19%) and coverage ranging
from 0.74 to 0.92. For common events, the RSRC estimates had around 50% less bias than the RC estimates, whereas for
rare events, they yielded only a small decrease in bias. Even in these more complex error settings, both raking estimates
remained nearly unbiased, had lower standard errors than the complete case estimates, and maintained coverage around
95% across varying error variances and covariances. We noticed that for all parameter settings, the GRRC and GRN esti-
mators were again nearly indistinguishable. Overall for the common event settings, the RSRC estimates had the lowest
MSE when the error variances were both 0.5; otherwise, the raking estimates had the lowest MSE for all other settings.
For the rare event settings, the RC estimates had the lowest MSE across all variance and covariance settings.

We present the relative performance for estimating a larger log hazard ratio, keeping other parameters the same as in
Tables 2 and 3, in Table 4 and Supplementary Materials Table 1 in Appendix C. Both the RC and RSRC estimates had large
bias, ranging from −31% to −37% and −23% to −32%, respectively, as well as coverage 50% or below. Again, both raking
estimates remained nearly unbiased, had lower standard errors than the complete case estimates, and maintained cov-
erage around 95% across varying error variances and covariances, with the GRRC and GRN estimates indistinguishable.
Across all error settings, the raking estimates had the lowest MSE.

Table 5 presents the type 1 error, ASE, ESE, and MSE when 𝛽X = 0 in the presence of correlated, additive measurement
error in the outcome and covariate X with normally distributed errors. For both levels of censoring, the type 1 error of the
RC and RSRC estimates ranged from 0.044 to 0.059 and the raking estimates were around 0.042 and 0.046 for common
and rare events, respectively. It is of note that the type 1 error for the naive estimator is 1 for both levels of censoring,
meaning the null hypothesis was falsely rejected in every simulation run.

Results for 𝛽Z, for the settings presented in Tables 1 to 4, are presented in Tables 2 to 5 of Appendix C in the Supple-
mentary Materials. The conclusions for this parameter were similar to those of 𝛽X ; however, the raking estimates had the
lowest MSE across more settings. Tables 6 to 8 in Appendix D of the Supplementary Materials present simulation results
for 𝛽X in a setting where the covariates are only subject to classical measurement error, keeping all other settings the same
as Tables 2 to 4. Results are similar to those presented above.

We consider the relative performance for when the error distributions were generated as a mixture of a point mass at
0 and shifted gamma distribution, with settings otherwise the same as those in Tables 1-4, in Tables 9 to 12 of Appendix E
in the Supplementary Materials. The RC and RSRC estimators were challenged by such departures from normality, with
generally more bias and higher MSE, while the raking estimators remained unbiased with lower MSE.

Table 13 in Appendix F of the Supplementary Materials considers the relative performance of the estimators in the
presence of misclassification errors in addition to the correlated additive errors in the time-to-event and covariate X , as
described in Section 2.2. The RC and RSRC estimates had very large bias and coverage between 61% and 68% as these
methods were not developed to directly handle misclassification. As expected, the GRRC and GRN estimates were nearly
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%Censoring 𝜷X 𝝈2
𝝂 Method %Bias ASE ESE MSE CP

25 log(1.5) True −0.025 0.030 0.031 0.001 0.947

0.5 RC −12.677 0.042 0.043 0.004 0.752

RSRC −5.056 0.048 0.050 0.003 0.928

GRRC 0.074 0.059 0.058 0.003 0.957

GRN 0.271 0.060 0.059 0.003 0.958

Naive −37.562 0.030 0.031 0.024 0.002

Complete 0.321 0.098 0.098 0.010 0.952

1 RC −18.522 0.046 0.047 0.008 0.624

RSRC −7.991 0.055 0.056 0.004 0.910

GRRC −0.025 0.066 0.065 0.004 0.956

GRN 0.074 0.066 0.065 0.004 0.958

Naive −40.891 0.030 0.030 0.028 0.000

Complete 0.321 0.098 0.098 0.010 0.954

log(3) True 0.046 0.037 0.036 0.001 0.951

0.5 RC −26.879 0.054 0.056 0.090 0.001

RSRC −19.188 0.060 0.063 0.048 0.070

GRRC −0.983 0.103 0.102 0.010 0.938

GRN −1.010 0.104 0.104 0.011 0.939

Naive −37.347 0.031 0.040 0.170 0.000

Complete 0.819 0.118 0.118 0.014 0.954

1 RC −33.042 0.056 0.058 0.135 0.000

RSRC −23.466 0.065 0.067 0.071 0.027

GRRC −0.883 0.108 0.105 0.011 0.940

GRN −0.847 0.108 0.106 0.011 0.942

Naive −41.88 0.030 0.039 0.213 0.000

Complete 0.819 0.118 0.118 0.014 0.955

75 log(1.5) True 0.074 0.054 0.054 0.003 0.948

0.5 RC −15.340 0.079 0.080 0.010 0.872

RSRC −12.874 0.087 0.089 0.011 0.898

GRRC −0.099 0.113 0.112 0.012 0.957

GRN 0.543 0.116 0.117 0.014 0.955

Naive −69.204 0.054 0.055 0.082 0.000

Complete 0.444 0.176 0.182 0.033 0.950

1 RC −17.338 0.081 0.084 0.012 0.845

RSRC −15.488 0.089 0.092 0.012 0.873

GRRC −0.444 0.118 0.118 0.014 0.952

GRN 0.247 0.120 0.121 0.015 0.953

Naive −57.638 0.054 0.056 0.058 0.016

Complete −0.099 0.177 0.182 0.033 0.946

(Continues)

T A B L E 1 Simulation results for 𝛽X under
additive measurement error only in the
outcome with normally distributed error and
25% and 75% censoring for the true event times
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T A B L E 1 (Continued) %Censoring 𝜷X 𝝈2
𝝂 Method %Bias ASE ESE MSE CP

log(3) True 0.118 0.058 0.059 0.003 0.950

0.5 RC −31.030 0.085 0.088 0.124 0.024

RSRC −28.827 0.094 0.097 0.110 0.087

GRRC −0.901 0.166 0.163 0.027 0.951

GRN −0.446 0.168 0.175 0.031 0.950

Naive −52.357 0.053 0.062 0.335 0.000

Complete 1.912 0.191 0.197 0.039 0.946

1 RC −33.060 0.087 0.091 0.140 0.024

RSRC −31.567 0.095 0.099 0.130 0.055

GRRC −0.774 0.171 0.170 0.029 0.940

GRN −0.501 0.171 0.172 0.030 0.942

Naive −48.680 0.053 0.061 0.290 0.000

Complete 1.930 0.193 0.202 0.041 0.946

Note: For 2000 simulated data sets, the bias, average bootstrap standard error (ASE) for the four
proposed estimators, average model standard error (ASE) for naive and complete case, empirical
standard error (ESE), mean squared error (MSE), and 95% coverage probabilities (CP) are
presented.

unbiased because the raking estimators do not depend on the structure of the measurement error. Overall, the raking
estimators had the lowest MSE in this more complex error setting.

Tables 14 and 15 in Appendix G of the Supplementary Materials considers the relative performance of the estimators
when the validation subset is selected using case-control sampling, with settings otherwise the same as those in Table 3
and Supplementary Materials Table 1 in Appendix C. The RC and RSRC estimates had moderate to large bias for both
values of 𝛽X , as in the simple random sampling settings. The GRRC and GRN estimates, however, were nearly unbiased
and had the lowest MSE for almost all settings due to the lower standard errors compared with the estimates from the
simple random sampling scenarios.

6 DATA EXAMPLE

We applied the four proposed methods to electronic health records data from a large HIV clinic, the Vanderbilt Com-
prehensive Care Clinic (VCCC). The VCCC is an outpatient clinic that provides care to HIV patients and collects clinical
data over time that is electronically recorded by nurses and physicians.26 The VCCC fully validated all key variables for
all records, resulting in an unvalidated, error-prone data set and a fully validated data set that we consider to be correct.
Thus, this observational cohort is ideal for directly assessing the relative performance of the proposed regression cali-
bration and raking estimators compared with the naive and HT estimators. Note that the naive estimator was calculated
using only the unvalidated data set as if the validated data set did not exist. In addition, the HT estimator was calculated
using a subsample of the fully validated data set. Throughout this example, we considered the estimates from the fully
validated data set to be the “truth” and defined these as the parameters of interest. In addition, all considerations of bias
were relative to these target parameters. We considered two different failure time outcomes of interest: time from the
start of antiretroviral therapy (ART) to the time of virologic failure and to the time of first AIDS defining event (ADE).
For the former analysis, virologic failure was defined as an HIV-RNA count greater than or equal to 400 copies/mL and
patients were censored at the last available test date after ART initiation. The HIV-RNA assay, and hence time at virologic
failure was largely free of errors, whereas the time at ART start was error-prone, corresponding to errors in U. The ADE
outcome was defined as the first opportunistic infection (OI) and patients were censored at age of death if it occurred or
last available test date after ART initiation. For this failure time, both time of ART initiation and time at first ADE were
error-prone, corresponding to errors in U and Δ. We studied the association between the outcomes of interest and the
CD4 count and age at ART initiation. Since date of ART initiation was error prone, CD4 and age at ART initiation may
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T A B L E 2 Simulation results for 𝛽X = log 1.5 under correlated, additive measurement error in the outcome and covariate X
with normally distributed error and 25% censoring for the true event time

𝜷X 𝝈2
𝝂 𝝈2

𝝐 𝝈𝝂,𝝐 Method %Bias ASE ESE MSE CP

log(1.5) True −0.025 0.030 0.031 0.001 0.947

0.5 0.5 0.15 RC −13.762 0.059 0.059 0.007 0.804

RSRC −6.338 0.070 0.068 0.005 0.922

GRRC 0.173 0.083 0.084 0.007 0.947

GRN 0.345 0.083 0.084 0.007 0.946

Naive −79.760 0.024 0.025 0.105 0.000

Complete 0.321 0.098 0.098 0.010 0.952

0.30 RC −13.491 0.060 0.060 0.007 0.813

RSRC −6.116 0.071 0.069 0.005 0.928

GRRC 0.296 0.083 0.084 0.007 0.947

GRN 0.567 0.083 0.084 0.007 0.945

Naive −97.024 0.024 0.025 0.155 0.000

Complete 0.173 0.098 0.099 0.010 0.954

1 0.15 RC −13.836 0.072 0.071 0.008 0.843

RSRC −7.054 0.084 0.083 0.008 0.922

GRRC 0.049 0.089 0.090 0.008 0.948

GRN 0.148 0.089 0.090 0.008 0.952

Naive −86.099 0.020 0.020 0.122 0.000

Complete 0.271 0.098 0.098 0.010 0.952

0.30 RC −13.639 0.073 0.072 0.008 0.845

RSRC −6.955 0.086 0.084 0.008 0.914

GRRC 0.074 0.089 0.090 0.008 0.947

GRN 0.271 0.089 0.089 0.008 0.945

Naive −97.912 0.020 0.020 0.158 0.000

Complete 0.222 0.098 0.098 0.010 0.957

1 0.5 0.15 RC −19.237 0.065 0.065 0.010 0.746

RSRC −9.520 0.078 0.076 0.007 0.902

GRRC 0.123 0.085 0.086 0.007 0.944

GRN 0.247 0.085 0.086 0.007 0.944

Naive −79.686 0.024 0.025 0.105 0.000

Complete 0.321 0.098 0.098 0.010 0.954

0.30 RC −19.311 0.066 0.066 0.010 0.743

RSRC −9.693 0.079 0.077 0.008 0.903

GRRC 0.148 0.085 0.086 0.007 0.945

GRN 0.345 0.085 0.085 0.007 0.946

Naive −95.027 0.024 0.025 0.149 0.000

Complete 0.173 0.098 0.098 0.010 0.955

1 0.15 RC −19.213 0.079 0.079 0.012 0.801

(Continues)
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T A B L E 2 (Continued)

𝜷X 𝝈2
𝝂 𝝈2

𝝐 𝝈𝝂,𝝐 Method %Bias ASE ESE MSE CP

RSRC −10.235 0.095 0.092 0.010 0.908

GRRC −0.025 0.090 0.092 0.008 0.945

GRN 0.074 0.090 0.091 0.008 0.946

Naive −86.049 0.020 0.020 0.122 0.000

Complete 0.148 0.098 0.099 0.010 0.952

0.30 RC −19.213 0.080 0.080 0.012 0.798

RSRC −10.580 0.096 0.093 0.010 0.902

GRRC 0.123 0.090 0.091 0.008 0.947

GRN 0.247 0.090 0.091 0.008 0.948

Naive −96.556 0.020 0.020 0.154 0.000

Complete 0.321 0.098 0.098 0.010 0.953

Note: For 2000 simulated data sets, the bias, average bootstrap standard error (ASE) for the four proposed estimators, average model
standard error (ASE) for naive and complete case, empirical standard error (ESE), mean squared error (MSE), and 95% coverage
probabilities (CP) are presented.

also have errors. Appendix H of the Supplementary Materials provides detail on the eligibility criteria and statistics for
the covariate and time-to-event error for both analyses.

The analysis of the virologic failure outcome included 1863 patients with moderate censoring rates of 46.1% and 47.2%
in the unvalidated and validated data set, respectively. We observed highly (slightly) skewed error in CD4 count at ART
start (observed event times) and very small amounts of misclassification. The validation subset was selected as a simple
random sample of 20%, resulting in 373 patients. For this sampling design, the HT estimator is equivalent to the complete
case estimator. The hazard ratios and their corresponding confidence intervals comparing the estimators are displayed
graphically in the first row of Figure 1 and shown in Table 16 in Appendix I of the Supplementary Materials. We note
that the standard errors for all estimators (including the true, naive, and HT) were calculated using the bootstrap with
300 replicates, which were somewhat larger than the model SEs likely due to a lack of fit of the Cox model. The RSRC
estimators were recalibrated at vigintiles of the observed event times. For this analysis, there was little bias in the naive
estimators of a 100 cell/mm3 increase in CD4 count at ART initiation and 10 year increase of age at ART initiation (1.87%
and 2.17%, respectively). For both covariates, RC and RSRC provided very minimal improvements in bias, albeit with
slightly wider confidence intervals. Small bias notwithstanding, we noticed that both the GRRC and GRN estimators had
smaller bias compared with the naive estimator and had narrower confidence intervals than the HT estimator. The GRRC
and GRN estimators had very little differentiating them, similar to what was observed in the simulations.

The analysis of the ADE outcome included 1595 patients with very high censoring rates of 84.5% and 93.8% in the
unvalidated and validated data set, respectively. We observed highly (slightly) skewed error in CD4 count at ART start
(observed event times) and a misclassification rate of 11% that was largely due to false positives (positive predictive
value= 35%). While the RC and RSRC methods developed in this article do not explicitly handle misclassification, we
were nevertheless interested in seeing how they would perform in this real data scenario in comparison with the raking
methods that can handle misclassification. Due to ADE being a rare event, we utilized a case-cohort sampling scheme
to select the validation subset. Specifically, we selected a simple random sample of 7%, or 112 patients, from the full
error-prone data and then added the remaining 227 subjects classified as cases by the error-prone ADE indicator to the
validation subset. Note that due to the outcome-dependent sampling scheme of the case-cohort design, the estimates of
the conditional expectations involved in the RC and RSRC estimators cannot be calculated in the same manner as under
simple random sampling. Thus, we used IPW least squares to estimate the conditional expectations for RC, RSRC, and
GRRC (step 1 of calculating raking estimates as detailed in Section 4.3) . The hazard ratios and their corresponding con-
fidence intervals comparing the estimators are displayed graphically in the second row of Figure 1 and shown in Table
16 in Appendix I of the Supplementary Materials. The standard errors for all estimators were again calculated using the
bootstrap with 300 replicates. We noticed significantly more bias in the naive estimators of a 100 cell/mm3 increase in
CD4 count at ART initiation and 10 year increase of age at CD4 count measurement (31.44% and 31.2%, respectively). In
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T A B L E 3 Simulation results for 𝛽X = log 1.5 under correlated, additive measurement error in the outcome and covariate X
with normally distributed error and 75% censoring for the true event time

𝜷X 𝝈2
𝝂 𝝈2

𝝐 𝝈𝝂,𝝐 Method %Bias ASE ESE MSE CP

log(1.5) True 0.074 0.054 0.054 0.003 0.948

0.5 0.5 0.15 RC −15.143 0.109 0.108 0.015 0.906

RSRC −12.677 0.120 0.120 0.017 0.925

GRRC 0.222 0.154 0.153 0.023 0.955

GRN 0.987 0.156 0.156 0.024 0.956

Naive −120.208 0.046 0.046 0.240 0.000

Complete 0.444 0.176 0.182 0.033 0.950

0.30 RC −14.477 0.109 0.108 0.015 0.900

RSRC −11.715 0.121 0.119 0.016 0.922

GRRC 0.099 0.154 0.152 0.023 0.954

GRN 1.406 0.154 0.154 0.024 0.954

Naive −167.043 0.048 0.049 0.461 0.000

Complete 0.444 0.177 0.183 0.034 0.948

1 0.15 RC −14.896 0.134 0.131 0.021 0.920

RSRC −13.047 0.146 0.146 0.024 0.931

GRRC −0.099 0.166 0.164 0.027 0.962

GRN 0.271 0.168 0.166 0.028 0.958

Naive −113.623 0.038 0.038 0.214 0.000

Complete 0.271 0.177 0.183 0.034 0.952

0.30 RC −14.650 0.133 0.131 0.021 0.922

RSRC −12.381 0.146 0.145 0.024 0.936

GRRC 0.839 0.166 0.164 0.027 0.958

GRN 1.430 0.168 0.167 0.028 0.956

Naive −143.465 0.039 0.039 0.340 0.000

Complete 1.208 0.177 0.182 0.033 0.948

1 0.5 0.15 RC −16.993 0.113 0.114 0.018 0.890

RSRC −15.316 0.123 0.123 0.019 0.907

GRRC −0.370 0.156 0.155 0.024 0.954

GRN 0.444 0.158 0.157 0.024 0.952

Naive −102.228 0.045 0.046 0.174 0.000

Complete −0.099 0.177 0.182 0.033 0.946

0.30 RC −17.264 0.113 0.112 0.017 0.892

RSRC −15.464 0.124 0.124 0.019 0.904

GRRC −0.222 0.155 0.154 0.024 0.956

GRN 0.814 0.156 0.155 0.024 0.958

Naive −132.613 0.046 0.046 0.291 0.000

Complete 0.296 0.176 0.182 0.033 0.950

1 0.15 RC −17.091 0.138 0.136 0.023 0.918

RSRC −15.562 0.150 0.152 0.027 0.916

(Continues)
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T A B L E 3 (Continued)

𝜷X 𝝈2
𝝂 𝝈2

𝝐 𝝈𝝂,𝝐 Method %Bias ASE ESE MSE CP

GRRC −0.222 0.166 0.165 0.027 0.957

GRN 0.123 0.168 0.167 0.028 0.955

Naive −101.587 0.037 0.038 0.171 0.000

Complete −0.074 0.176 0.182 0.033 0.948

0.30 RC −17.042 0.138 0.135 0.023 0.916

RSRC −15.291 0.151 0.151 0.027 0.916

GRRC 0.123 0.167 0.165 0.027 0.954

GRN 0.814 0.169 0.167 0.028 0.952

Naive −121.86 0.038 0.038 0.246 0.000

Complete 0.617 0.177 0.180 0.032 0.954

Note: For 2000 simulated data sets, the bias, average bootstrap standard error (ASE) for the 4 proposed estimators, average model standard
error (ASE) for naive and complete case, empirical standard error (ESE), mean squared error (MSE), and 95% coverage probabilities (CP) are
presented.

fact, the naive point estimate for age was in the wrong direction compared with the true estimate, yielding anticonserva-
tive bias. The RC and RSRC estimators provided little to no bias improvement for both covariates. However, the GRRC
and GRN estimates were both nearly unbiased with narrower confidence intervals than those of the HT estimator. In this
analysis, the HT estimator appeared to have some bias due to random sampling variability; we evaluated its performance
across 10 different validation subsets using case-cohort sampling. The mean of the 10 estimates is given in Table 17 in
Appendix I of the Supplementary Materials and shows minimal bias for the HT estimator. Again, we noticed that the
GRRC and GRN estimators gave similar estimates, with GRRC (GRN) having narrower confidence intervals for the CD4
(age) hazard ratios. In this analysis, we noticed huge improvements in bias from the GRRC and GRN estimators com-
pared with the naive estimators and decreased standard errors compared with the HT estimator even in the presence of
appreciable misclassification, which the RC and RSRC estimators could not handle.

The R package RRCME at https://github.com/ericoh17/RRCME implements our methods on a simulated data set that
mimics the structure of the VCCC data. Additionally, Appendix J of the Supplementary Materials contains code that
implements the RC and GRN estimators for this simulated data to demonstrate ease of application of these estimators.

7 DISCUSSION

Data collected primarily for nonresearch purposes, such as those from administrative databases or EHR, can have errors
in both the outcome and exposures of interest, which can be correlated. Using EHR data from the VCCC HIV cohort, we
observed that Cox regression models using the unvalidated data set compared with the fully validated data set resulted
in a 3-fold underestimation of the CD4 hazard ratio for ADE and overestimation of the age hazard ratio in the wrong
direction such that the null hypothesis of a unit hazard ratio was nearly rejected. Spurious associations driven by such
unvalidated outcomes and exposures can misdirect clinical researchers and can be harmful to patients down the line.
Even when variables are reviewed and validated for a subset of the records, the additional information gained from these
validation procedures are not often utilized in estimation.

The existing literature does not adequately address such complex error across multiple variables; in particular, the
timing error in the censored failure time outcome. In this article, we developed four different estimators that incorporate
an internal validation subset in the analysis to try to obtain unbiased and efficient estimates. The RC and RSRC estimators
approximate the true model by estimating the true outcome and/or exposure given the unvalidated data and information
on the error structure from the validation subset. This approximation lacks consistency in most cases for nonlinear models
and the RC and RSRC estimators can have appreciable bias for some error settings. However, in settings with a modest
hazard ratio and rare events, RC outperformed the other estimators with respect to having the lowest MSE. RSRC had
the lowest MSE for settings with a modest hazard ratio and common events under only censored outcome error and for
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T A B L E 4 Simulation results for 𝛽X = log 3 under correlated, additive measurement error in the outcome and covariate X
with normally distributed error and 25% censoring for the true event time

𝜷X 𝝈2
𝝂 𝝈2

𝝐 𝝈𝝂,𝝐 Method %Bias ASE ESE MSE CP

log(3) True 0.055 0.037 0.036 0.001 0.952

0.5 0.5 0.15 RC −31.239 0.077 0.077 0.124 0.026

RSRC −23.038 0.092 0.092 0.072 0.239

GRRC 0.337 0.113 0.112 0.012 0.950

GRN 0.346 0.112 0.111 0.012 0.950

Naive −70.243 0.025 0.027 0.596 0.000

Complete 0.819 0.118 0.118 0.014 0.954

0.30 RC −31.904 0.079 0.080 0.129 0.030

RSRC −23.102 0.097 0.096 0.074 0.274

GRRC 0.410 0.113 0.111 0.012 0.952

GRN 0.473 0.112 0.111 0.012 0.954

Naive −76.842 0.024 0.026 0.713 0.000

Complete 0.810 0.118 0.118 0.014 0.955

1 0.15 RC −31.895 0.094 0.093 0.132 0.086

RSRC −24.394 0.111 0.110 0.084 0.329

GRRC 0.373 0.116 0.115 0.013 0.954

GRN 0.410 0.116 0.114 0.013 0.952

Naive −79.473 0.020 0.022 0.763 0.000

Complete 0.719 0.118 0.118 0.014 0.956

0.30 RC −32.359 0.096 0.095 0.135 0.092

RSRC −24.540 0.115 0.113 0.086 0.351

GRRC 0.391 0.116 0.114 0.013 0.957

GRN 0.455 0.115 0.114 0.013 0.954

Naive −83.888 0.020 0.021 0.850 0.000

Complete 0.737 0.118 0.118 0.014 0.956

1 0.5 0.15 RC −35.900 0.079 0.079 0.162 0.014

RSRC −26.916 0.095 0.094 0.096 0.163

GRRC 0.328 0.114 0.112 0.013 0.950

GRN 0.337 0.114 0.112 0.013 0.951

Naive −71.372 0.025 0.027 0.616 0.000

Complete 0.819 0.118 0.118 0.014 0.955

0.30 RC −36.528 0.080 0.081 0.168 0.014

RSRC −27.334 0.098 0.097 0.100 0.181

GRRC 0.337 0.114 0.112 0.013 0.949

GRN 0.364 0.114 0.112 0.012 0.954

Naive −76.997 0.024 0.026 0.716 0.000

Complete 0.728 0.118 0.118 0.014 0.956

1 0.15 RC −36.246 0.096 0.096 0.168 0.052

RSRC −28.409 0.114 0.113 0.110 0.253

(Continues)
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T A B L E 4 (Continued)

𝜷X 𝝈2
𝝂 𝝈2

𝝐 𝝈𝝂,𝝐 Method %Bias ASE ESE MSE CP

GRRC 0.391 0.117 0.115 0.013 0.950

GRN 0.401 0.116 0.115 0.013 0.950

Naive −80.256 0.020 0.022 0.778 0.000

Complete 0.755 0.118 0.118 0.014 0.952

0.30 RC −36.674 0.098 0.097 0.172 0.056

RSRC −28.754 0.116 0.115 0.113 0.264

GRRC 0.428 0.117 0.114 0.013 0.952

GRN 0.446 0.116 0.114 0.013 0.954

Naive −84.015 0.020 0.021 0.852 0.000

Complete 0.746 0.118 0.118 0.014 0.954

Note: For 2000 simulated data sets, the bias, average bootstrap standard error (ASE) for the four proposed estimators, average model
standard error (ASE) for naive and complete case, empirical standard error (ESE), mean squared error (MSE), and 95% coverage
probabilities (CP) are presented.

T A B L E 5 Type 1 error results for 𝛽X = 0 under correlated, additive measurement error in the outcome and
covariates with normally distributed error and 25% and 75% censoring for the true event time

%Censoring 𝝈2
𝝂 𝝈2

𝝐 𝝈𝝂,𝝐 Method Type 1 error ASE ESE MSE

25 0.5 0.5 0.15 RC 0.044 0.054 0.054 0.003

RSRC 0.050 0.063 0.062 0.004

GRRC 0.043 0.077 0.075 0.006

GRN 0.042 0.078 0.075 0.006

Naive 1.000 0.025 0.026 0.019

Complete 0.049 0.097 0.097 0.010

75 0.5 0.5 0.15 RC 0.050 0.102 0.102 0.010

RSRC 0.059 0.112 0.116 0.014

GRRC 0.046 0.141 0.141 0.020

GRN 0.046 0.143 0.143 0.021

Naive 1.000 0.045 0.047 0.080

Complete 0.056 0.170 0.178 0.032

Note: For 2000 simulated data sets, the type 1 error, average bootstrap standard error (ASE) for the four proposed estimators, average
model standard error (ASE) for naive and complete case, empirical standard error (ESE), and mean squared error (MSE) are presented.

settings with a modest hazard ratio, common events, and small error variance under correlated outcome and covariate
error. The proposed regression calibration methods were considered for the proportional hazards model; however, we
expect they would work quite well more generally in accelerated failure time models where an additive error structure is
assumed. In fact, some forms of error in the outcome will bias the proportional hazards parameter but not the acceleration
parameter.27

The generalized raking estimators are consistent whenever the design-weighted complete case estimating equations
(eg, HT estimator) yields consistent estimators; they use influence functions based on the unvalidated data as auxiliary
variables to improve efficiency over the complete case estimator and can be used under outcome-dependent sampling.
The raking estimators are not sensitive to the measurement error structure, which is in contrast to the RC and RSRC
estimators that can perform poorly when the error structure is not correctly specified. In particular, we noticed in our
data example and simulations that in the presence of misclassification as well as timing errors, GRRC and GRN yield
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bootstrap for the regression calibration
(RC), risk set regression calibration
(RSRC), generalized raking regression
calibration (GRRC), and generalized
raking naive (GRN) estimators

nearly unbiased estimates, while RC and RSRC are substantially biased. Generally, the raking estimators performed well,
with little small sample bias and, in most cases, the smallest MSE. The raking estimators had large efficiency gains in
settings with a large hazard ratio as well those with a modest hazard ratio, common events, and large error variances. For
all settings considered, GRRC and GRN performed similarly. GRN has the added advantage that it can be applied with
standard statistical software, for example, the survey package in R.25

As noted above, the performance of the GRRC and GRN estimators was virtually identical, contrary to our hypothesis
that the GRRC estimates would be more efficient than those of GRN. This result was unknown for previous applications of
raking13,14 and in fact goes against their recommendation to build imputation models for the partially missing variables.
For the setting of only classical covariate measurement error and no time-to-event error, we derived (not shown) that the
influence functions for Cox regression using X⋆ vs X̂ are scalar multiples of each other. Thus, the solutions to (7) under
both auxiliary variables are equivalent. For the more complex error settings considered in this article (Sections 2.1 and 2.2),
an explicit characterization of the relationship between the two auxiliary variables is more difficult, but we hypothesize
that an approximation of a similar type holds for the settings studied.

The motivating example for this article was to develop methods where there were only errors in the failure time
outcome but not in the failure indicator. We additionally considered methods, namely, GRRC and GRN, that are able
to address more general error structures. We believe future research investigating RC methods to directly correct for
misclassification resulting from time-to-event error would be worthwhile. In addition, while theory demonstrates that
generalized raking estimators are consistent, we noticed that the small sample bias (and efficiency) can depend on the
specific validation subsample. Developing optimal subsampling schemes to maximize efficiency would not only improve
the complete case analysis, but also increase the efficiency gains of the raking estimators and is an area of future work.
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