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Measurement error arises through a variety of mechanisms. A rich literature
exists on the bias introduced by covariate measurement error and on methods
of analysis to address this bias. By comparison, less attention has been given
to errors in outcome assessment and nonclassical covariate measurement error.
We consider an extension of the regression calibration method to settings with
errors in a continuous outcome, where the errors may be correlated with prog-
nostic covariates or with covariate measurement error. This method adjusts for
the measurement error in the data and can be applied with either a validation
subset, on which the true data are also observed (eg, a study audit), or a reliability
subset, where a second observation of error prone measurements are available.
For each case, we provide conditions under which the proposed method is iden-
tifiable and leads to consistent estimates of the regression parameter. When the
second measurement on the reliability subset has no error or classical unbiased
measurement error, the proposed method is consistent even when the primary
outcome and exposures of interest are subject to both systematic and random
error. We examine the performance of the method with simulations for a variety
of measurement error scenarios and sizes of the reliability subset. We illustrate
the method’s application using data from the Women’s Health Initiative Dietary
Modification Trial.
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1 INTRODUCTION

Measurement error arises in many biomedical settings. For example, data can be recorded with error in large clinical
databases. Errors are also common in exposures that are primarily measured by self-report, such as dietary intakes. These
errors can occur in the outcome or covariates, or both. Furthermore, errors in the outcome may be correlated with impor-
tant prognostic variables or with errors in covariates. While much attention in the literature has focused on the setting
of classical covariate measurement error, less attention has been paid to errors in the outcome. One reason for this is
that for independent, mean zero random error in the outcome, the usual linear regression parameter estimates are unbi-
ased; however, if the error in the outcome is related to prognostic variables or the errors in the covariates, then the
estimated regression coefficients will be biased. Some work has been done in the setting of covariate-independent error
in the response for the generalized linear model1 and several have considered methods to address misclassification in the
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response.2-6 Our interest is the linear regression setting where there may be error in both the response and covariates,
and where the error in the response is correlated with either error in a covariate and or other covariates in the regression
model.

One setting where errors are common in both outcome and exposures is large clinical studies, particular those using
data primarily collected for nonresearch purposes (eg, administrative databases and electronic health records). Certain
types of records (eg, records from a particular study site) are often more likely to have errors, records with errors often tend
to have errors across multiple variables, and the magnitude of these errors may be correlated. When a covariate alone is
subject to random error, its regression coefficient will be attenuated; however, with correlated errors in the outcome and
exposure covariates, ignored errors in the data could lead to bias in any direction in estimates of regression parameters.
In some studies, data validation or audits are performed in subsets of records for quality control purposes. Although
often discarded, findings from audit data can be used to adjust analyses for errors which remain in the unaudited data.
We will consider a measurement error correction method for linear regression that produces consistent estimates in the
presence of correlated errors using audit/validation data, where it is assumed the true error-free values are observed on
the audit/validation subset. Shepherd and Yu7 proposed a moment correction method for linear regression for this setting
and applied their method to data from an HIV observational cohort study. Shepherd et al.8 considered similar methods in
the context of audited randomized clinical trials. We consider an extension of the popular regression calibration method
to this setting.

We also address a setting not considered by previous work to address correlated errors in outcomes and covariates,
one where no validation subset is available, but where a second, objective measurement, that is, with unbiased classical
measurement error, for the error prone exposures and outcome is available on a subset. In epidemiology, there are many
examples of exposures and outcomes that are self-reported, and subject to both random and systematic error, but for which
an objective measurement can also be obtained by a more expensive or more invasive procedure. One such setting comes
from nutritional epidemiology, where patterns of dietary consumption are of interest; namely how one dietary attribute,
such as energy intake, is associated with other dietary intakes, all of which are measured by self-reported questionnaire
data. A common instrument to measure dietary intake, the food frequency questionnaire (FFQ), has been shown to have
both systematic and random error;9 and errors in outcomes and exposures of interest assessed by the FFQ are likely cor-
related. Social pressure to lead a healthy lifestyle could correlate the systematic measurement error across self-reported
outcomes and exposures. For some nutrients, there are objective biomarkers, known as recovery markers, which capture
actual intake up to mean zero, random error. Two such examples are the doubly labeled water recovery marker for total
energy consumption10 and a 24-hour urinary nitrogen recovery marker for protein intake.11 Due to expense and partici-
pant burden, a large prospective cohort study generally could only include these recovery markers on a small subset. We
show that our methods can also be applied in this setting, where the primary exposure and outcome measures are subject
to errors which are correlated and may consist of both systematic bias and random error and where an objective measure
for these variables is available in a subcohort.

In this article, we develop an extension of regression calibration that yields consistent parameter estimates in linear
regression in the presence of systematic and random measurement error in the outcome and covariates, as well as poten-
tially correlated errors between the outcome and covariates. Regression calibration, introduced by Prentice,12 has become
a popular method for addressing covariate measurement error, likely because of its easy implementation and its good
numerical performance in a broad range of settings.13 Many applications of this method assume classical, unbiased mea-
surement error in the covariate only, and to date this method has not addressed correlated errors between outcomes and
exposures. Correlated errors in the outcome and exposure have been considered for linear regression in settings where
the comparison of two different assays for a given compound is of interest. These methods frequently focus on the best
measure of agreement for the assays or the calibration of one assay using another, but do not address covariate-dependent
errors.14,15 Keogh et al16 considered the case where there was differential linear outcome error dependent only on an
error-free binary treatment group indicator. We consider the more general case where the correlated errors in X and Y
are mean zero and also where, as in the self-reported diet example, errors in both outcome and covariates could have bias
dependent on subject characteristics. We provide assumptions under which repeat error-prone measures on a subset are
sufficient for the proposed method and that the true outcomes and covariates do not need to ever be observed. We also
consider the case where the true data are observed in a subset.

We examine the numerical performance of the proposed method for a variety of measurement error scenar-
ios and compare its performance to the naive solution that ignores the error. We then illustrate the method
with a data example using nutritional assessment data from the Women’s Health Initiative Dietary Modification
Trial.17
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2 MEASUREMENT ERROR MODEL

Let Y i be a continuous outcome, Xi be a p× 1 vector of covariates that may be observed with error, and Zi be a q× 1 vector
of accurately observed covariates, for i= 1, … , N iid observations. Let X⋆

i and Y⋆
i be error prone versions of Xi and Y i,

respectively. Assume (Y i, Xi, Zi) follows the linear model

Yi = 𝛽0 + 𝛽′xXi + 𝛽′zZi + 𝜖i, (1)

where 𝜖i is mean zero random error that is independent of all other random variables in Equation (1). Instead of observing
(Xi, Zi, Y i), (X⋆

i ,Zi,Y⋆
i ) are observed on a cohort of N iid individuals and a random subset of n individuals have been

selected to have a second measure of Xi and Y i. We consider three cases: (1) where the second observation is a repeat
observation of (X⋆

ij ,Y
⋆
ij ), where j= 1, … , k; (2) where the second measure is the true (Xi, Y i), and (3) where the second

measure is a different error prone measure of (Xi, Y i), namely (X⋆
Bi,Y

⋆
Bi), which is an objective biomarker measure whose

errors are mean zero and independent of all other variables. Let V i be the indicator that individual i is selected to have
a second measure of (Xi, Y i). In the measurement error setting, this subset is referred to as a reliability subset when a
second error prone measure is observed and a validation subset when the truth observed. We will refer to the group of
individuals for which V i = 1 as the reliability subset in case 1; as the validation or audit subset in case 2, and the biomarker
subset in case 3. We next define the notation and measurement error model for each of these cases.

2.1 Case 1: Reliability subset

Define

X⋆
ij = Xi + Tij

Y⋆
ij = Yi + T̃ij, (2)

where i= 1, … , N; j= 1, … , ki; and ki = 2 for individuals where V i = 1 and 1 otherwise. (This could be easily extended
to ki > 2 for some individuals.) Suppose (Tij, T̃ij) are random error terms independent and identically distributed across
individuals and with mean zero. We allow cov(Tij, T̃ij) ≠ 0, but we assume that the error terms in repeat observations of
X⋆

ij and Y⋆
ij are independent, namely cov(Tij, T̃ij′ ) = cov(T̃ij, T̃ij′ ) = cov(Tij,Tij′ ) = 0 for j≠ j′. In this case, where only repeat

measures of (X⋆, Y⋆) are available, we must also assume that the error terms Ti and T̃i are independent of (Xi, Y i, Zi) for
the necessary parameters for X̂ i and Ŷi to be identifiable (see Appendix). For cases 2 and 3, we can relax this assumption.

2.2 Case 2: Validation subset

Here we assume the same additive error model as in case 1, only that ki = 1 for all subjects and for the subset of n indi-
viduals where V i = 1, we assume the true covariate and outcome (Xi, Y i) are also observed. When discussing this case, we
will drop the second subscript j to emphasize there are no repeat observations. Since X and Y are observed in a subset of
individuals, we can also allow for a more general error model, including differential error. That is, we can allow (Ti, T̃i)
to have nonzero mean and dependence on (Xi, Y i, Zi) without losing identifiability.

A motivating setting for the validation subset case is that of the data audit of clinical studies discussed by Shepherd
and Yu.7 In this setting, it is assumed that a subset of individuals are selected for a data audit that will ascertain the true
outcome and exposure. These authors considered a mixture model for (Ti, T̃i)with point mass at 0. We consider this model
as a special case of Equation (2).

2.3 Case 3: Biomarker subset

Motivated by our data example, we consider a more general error model than case 1 that allows the errors (Ti, T̃i),
in addition to being potentially correlated, to have nonzero mean due to potential scale and location bias in (X⋆

i ,Y
⋆
i ).
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We assume the general measurement error model for the setting of nutritional intake data,18 which allows for linear
covariate-dependent systematic biases, which has also been applied to physical activity data.19,20

We assume that ki = 1 for all subjects and that the error for the primary measures (X⋆
i ,Y

⋆
i ) may have systematic bias

that is a linear function of Zi. Specifically, for (X⋆
i ,Y

⋆
i ) defined by Equation (2), let

Ti = 𝛼0 + 𝛼1Zi + Ui,

T̃i = 𝛾0 + 𝛾1Zi + Ũi, (3)

where (Ui, Ũi) are potentially correlated mean zero random error terms that are independent of the other terms in the
model. For a random subset of n individuals (V i = 1), we assume the objective biomarker measurements (X⋆

B ,Y
⋆
B ) are also

available, which obey a classical error model. Namely,

X⋆
Bi = Xi + 𝜂i,

Y⋆
Bi = Yi + 𝜈i, (4)

where 𝜂i and 𝜈i are mean zero random errors that are mutually independent as well as independent of all terms in
Equation (1) and the error terms in Equation (3). Because the errors (𝜂, 𝜈) are independent of (X , Y , Z), this case will main-
tain some of the same flexibility as case 2, in that we can allow cov(X , T) and cov(Y , T̃) to be nonzero and still have all
parameters identifiable on the biomarker subset. Consequently, our proposed methods will be able to correct for a more
general measurement error model for the primary measures (X⋆, Y⋆) observed on the whole cohort even when the true
(X , Y ) are never observed.

3 PROPOSED METHOD

Following the general approach of regression calibration, we model the expected value of the unobserved data as a func-
tion of the observed data and use these quantities to estimate the regression parameters of interest. Using the additivity
of the error, one has

E(Y⋆|X⋆,Z) = E(Y |X⋆,Z) + E(T̃|X⋆,Z)
= E{E(Y |X ,X⋆,Z)|X⋆,Z} + E(T̃|X⋆,Z)
= E(𝛽0 + 𝛽xX + 𝛽zZ|X⋆,Z) + E(T̃|X⋆,Z)
= 𝛽0 + 𝛽xE(X|X⋆,Z) + 𝛽zZ + E(T̃|X⋆,Z).

The second equality holds by applying the law of iterated expectation to the first term. The third equality holds because,
by assumption, X⋆ provides no further information about Y than is contained in (X , Z). This suggests that one could
regress Y⋆ − Ê(T̃|X⋆,Z) on {Ê(X|X⋆,Z),Z} and get a consistent estimate for 𝜷 = (𝛽0, 𝛽x, 𝛽z), where Ê(⋅) denotes an esti-
mate of the expectation. If the error term in Y⋆ is independent of that in X⋆, or when there is no measurement error in
the observed outcome variable, one can perform the regression of Y⋆ on {Ê(X|X⋆,Z),Z} instead of (X , Z), which is the
usual regression calibration approach,12 to obtain a consistent estimator of 𝜷 = (𝛽0, 𝛽x, 𝛽z). Estimation of Ê(T̃|X⋆,Z) and
Ê(X|X⋆,Z) is described below for each case.

For an estimator of E(T̃|X⋆,Z), one can consider the following first-order approximation

E[T̃|X⋆,Z]=̇𝜇T̃ +
[
ΣT̃X⋆ ΣT̃Z

][ ΣX⋆ ΣX⋆Z

ΣZX⋆ ΣZ

]−1 [
X⋆ − 𝜇X⋆

Z − 𝜇Z

]
, (5)

where Σab ≡ Cov(a, b) and Σa ≡ Var(a). Similarly, we approximate E[X |X⋆, Z] as

E[X|X⋆,Z]=̇𝜇X +
[
ΣXX⋆ ΣXZ

][ ΣX⋆ ΣX⋆Z

ΣZX⋆ ΣZ

]−1 [
X⋆ − 𝜇X⋆

Z − 𝜇Z

]
. (6)
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This general approach is tailored to each of the cases discussed in Section 2. In each case, a sandwich estimator
of the variance is derived using the stacked estimating approach outlined by Stefanski and Boos.21 The Appendix pro-
vides more details. Standard errors for the proposed method can also be calculated using the bootstrap. For the bootstrap
variance estimator, the bootstrap sampling is stratified on the subset membership status (ie, reliability, validation, or
biomarker subset). For nonsubset members {X⋆

i ,Y
⋆
i ,Zi} is resampled. For subset members this data, together with the

additional information observed on those individuals, that is, {X⋆
i ,Y

⋆
i ,Zi,Xi,Yi} in the case of the validation sample, is

resampled.

3.1 Case 1

We first consider the reliability subset model shown in Equation (2). In this case, the errors (T, T̃) are independent of
(X , Y , Z) and centered at 0. One can use the following equalities to obtain the moments involving random variables
not directly observed: 𝜇T̃ = 0, 𝜇X = 𝜇X⋆ , ΣT̃X⋆ = ΣT̃T = cov(Y⋆

1 − Y⋆
2 ,X

⋆
1 − X⋆

2 )∕2, ΣXX⋆ = ΣX = ΣX⋆ − ΣT ,ΣT = var(X̃1 −
X̃2)∕2, ΣT̃Z = 0, and ΣXZ = ΣX⋆Z. Estimates of (ΣT̃X⋆ ,ΣT ,ΣXX⋆ ) can be estimated using the reliability subset, and estimates
of (𝜇X⋆ ,ΣX⋆ , 𝜇Z,ΣZ,ΣZX⋆ ) can be obtained from the entire study cohort.

For case 1, we have assumed subjects in the reliability subset have two measures of (X⋆, Y⋆), and those not in the
reliability subset have only one measure. In the above formulas one can think of X⋆ as a vector of two observations
or a single observation as appropriate. The Appendix provides an explicit estimating equation for each of the nuisance
parameters, which can also be used to provide a sandwich estimator of the variance for the regression parameters of
interest using the stacked estimating approach outlined by Stefanski and Boos.21

3.2 Case 2

Case 2, the validation subset, also uses Equations (5) and (6) for estimation of E[X|X⋆,Z] and E[T̃|X⋆,Z]. For case 2, all
necessary moments in Equations (5) and (6) can be directly estimated, since both (X , Y ) and (X⋆, Y⋆) are observed from
the validation subset. This allows for a more general error model to be identifiable with the data. For example, T and T̃
could be allowed to be correlated with Z. In this case, we need to estimate ΣT̃Z and ΣXZ from the validation subset. The
stacked estimation equations used for the M-estimator and the sandwich estimator of the variance for this case are also
provided in the Appendix.

3.3 Case 3

For case 3, the biomarker subset, we consider an error model that allows for systematic and correlated error, but for which
the true (X , Y ) can never be observed. From Equation (3), one has

E(Y⋆|X⋆,Z) = 𝛽0 + 𝛽xE(X|X⋆,Z) + 𝛽zZ + c⋆,

where c⋆ = E(T̃|X⋆,Z), which has a different functional form than in cases 1 and 2. One can once again estimate 𝛽 by
regressing Y⋆ − ĉ⋆ on {Ê(X|X⋆,Z),Z}. In this case, the parameters necessary to calculate ĉ⋆ are estimated by regressing
Y⋆ −Y B on (Z, X⋆) in the biomarker subset and one could also choose to estimate E(X |X⋆, Z) with a similar regression
approach, instead of the moment based approach in Equations (5) and (6). Because the biomarker XB only involves classi-
cal measurement error, E(XB|X⋆, Z)=E(X |X⋆, Z) and the nuisance parameters necessary for Ê(X|X⋆,Z) can be estimated
by the regression

E[XB|X⋆,Z] = 𝛼̃0 + 𝛼xX⋆ + 𝛼̃zZ.

The stacked estimation equations for the sandwich estimator of the variance for case 3 are provided in the Appendix. As
shown in the Appendix, parameters for the proposed method will be identifiable for error structures with E[XB|X⋆, Z]
and c⋆ linear in (X⋆, Z), using the biomarker subset data whose independent error terms are as described in
Section 2.3.
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4 SIMULATION STUDY

We examine the finite sample performance of the proposed regression calibration method using numerical simulation. In
this section we focus on case 1, assuming a reliability subset is available. We examine a limited set of simulations for case
2, given the similarity with case 1. Numerical simulations for case 3 are presented in the next section as part of the data
example. For the different parameter scenarios for the error and outcome regression models, we compare the numerical
performance of the proposed method with that of standard linear regression using the true (X , Y ) (True method) and
the error prone observed data (X⋆, Y⋆) without correction (Naive method). For all scenarios, we summarize the %bias,
empirical standard error (SE), average standard error from the sandwich estimator (ASE), and the coverage probability for
the normal 95% confidence intervals (CP) based on the sandwich variance estimator across 1000 Monte Carlo simulations.

We assume the linear regression model Y = 𝛽0 + 𝛽xX + 𝛽zZ + 𝜖, where 𝜇X = 0, 𝜎X = 1, and 𝜎𝜖 = 5, where 𝜎X is the
standard deviation for X and similarly for 𝜖. For Scenario 1, we simulate the simple linear regression model (𝛽z = 0), with
𝛽0 = 2 and let 𝛽x ∈ {1, 5}. For Scenario 2, we consider the ANCOVA model and additionally study the effect of measure-
ment error on a precisely observed covariate Z, setting (𝛽0, 𝛽x, 𝛽z) = (2, 1,−1), 𝜎z = 1, and 𝜌xz = cor(X,Z) ∈ {0, 0.5}. For
the measurement error parameters, we consider 𝜎T ∈ {0.5, 1}, assume 𝜎T̃ = 𝜎T and allow 𝜌TT̃ ≡ cor(T, T̃) to vary, with
𝜌TT̃ ∈ {−0.5,−0.25, 0, 0.25, 0.5}. Note the size of the error was chosen to represent moderate error, where the variance of
the error is 25% the variance of the true exposure X , and large error, where the error variance is equal to the variance of X .
For Scenarios 1 and 2 we consider normally distributed data, with a total cohort size of N = 400 and we assume we have a
reliability subset of size n, for which a second measure of (X⋆, Y⋆) is available. We vary the size of this reliability subset,
with n∈ {25, 50, 100, 200, 400} in order to understand how absolute size of validation set may have affected the stability of
the moment estimates, and consequently, the relative performance of the proposed method over the naïve method. We
then consider simulations with N = 1000, as well as simulations with non-Gaussian error distributions.

Table 1 presents the results for Scenario 1, with 𝛽x = 1. For all the parameter configurations in this table, there is
appreciable bias in the Naive estimates, that is, in the estimate based on error prone (X⋆, Y⋆) with no adjustment for
the measurement error. Note, that even when 𝜌 = 0, namely uncorrelated errors in the response Y* and X*, there is still
attenuation bias in the regression coefficients due to the error in X*. This is evident by the moment formulas for the
regression coefficients for Y regressed on X* and Z, which will not be the same as for the regression on X and Z.8 It is also
clear from expanding out those formulas for the naïve regression that the error in X* causes a scale bias in the coefficient
for X that depends on the covariance of X, Z, and X*. The correlated error from a nonzero 𝜌 creates an extra additive
error term for the coefficient of X that is proportional to ΣZZΣTT̃ , and whose sign matches the sign of 𝜌. Consequently, the
positive 𝜌 counteracted the attenuation bias from the error in X*, and the negative 𝜌 further increased the attenuation.
Coverage is generally poor for the Naive estimator, with worse performance for the larger measurement error and the
low to negative correlations between T̃ and T (𝜌TT̃). The relative performance of the proposed method depended on the
size of the reliability subset. Some small sample bias was present for n= 25, but for n= 50 and larger there was a notable
improvement in all scenarios, with bias generally between 1% and 5% and diminishing to less than 1% for larger n. The
mean squared error (MSE) for the proposed method was generally competitive or smaller than that for the Naive estimator
for n= 50 and a marked improvement for larger n, with one exception being that for the smaller 𝜎T = 𝜎T̃ = 0.5 and high
positive correlation the Naive estimator maintained the smallest MSE for all n. The ASE compared well with the empirical
SE and provided good nominal coverage. The CP for the proposed method was generally in the range of 93% to 95% and
comparable with the CP of 93.8% for the True estimator, that is, from regression using the true data (X , Y ).

Table 2 presents results for the same set of parameters, except now letting 𝛽x = 5. The performance of the regression
calibration estimator had little small sample bias and was comparatively unaffected by the size of 𝛽. The coverage prob-
ability was much poorer for the Naive estimator, and the proposed method maintained good coverage and the smallest
MSE for all scenarios with n> 50 and for the smaller error variance also had the smallest MSE for n= 25.

In Table 3, we show the results for the ANCOVA model for a similar set of measurement error parameters as in Tables 1
and 2, fixing 𝛽x = 1 and focusing on positive correlation for 𝜌TT̃ . As expected, the Naive estimator for 𝛽z is unaffected by
the measurement error in X⋆ for the scenarios where 𝜌xz = 0.8 For the other scenarios there is bias in the Naive estimator
and lower than the nominal 95% coverage for both 𝛽z and 𝛽x. The regression calibration estimates perform well across the
different parameter choices for the measurement error model, with good coverage and the small sample bias diminishing
with increasing size of the reliability subset. It is notable that in these simulations, when X is correlated with Z (𝜌xz = 0.5)
and 𝜌TT̃ ≠ 0, the MSE for the regression calibration estimator is larger than that for the Naive estimator except with the
larger reliability subsets. This is due to the increased uncertainty in the regression calibration estimates for 𝛽. Supplemen-
tary Table S1 in the Web Appendix examines scenarios similar to Table 3, only with smaller measurement error variance
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T A B L E 1 For 1000 simulated data sets of size N = 1000, the mean percent (%) bias, empirical standard error (SE),
average estimated standard error (ASE), mean squared error (MSE) and 95% coverage probability (CP) are given for 𝛽x .
Results are provided for linear regression using the true data (X , Y ) (TRUE), the error prone data (X⋆, Y⋆) (NAIVE), and
the proposed (X̂ , Ŷ ) estimated using a reliability subset (denoted by size of reliably subset n= 25, 50, 200, 400). Data are
generated according to Scenario 1 in Section 4, with 𝛽x = 1

𝝈T = 𝝈T̃ = 1 𝝈T = 𝝈T̃ = 0.5

𝝆TT̃ Method %Bias SE ASE MSE CP %Bias SE ASE MSE CP

0.5 TRUE −1.10 0.26 0.25 0.07 0.938 −1.10 0.26 0.25 0.07 0.938

NAIVE −25.58 0.19 0.18 0.10 0.699 −10.93 0.23 0.23 0.07 0.909

25 2.56 0.79 0.98 0.62 0.958 −1.03 0.31 0.29 0.09 0.934

50 0.79 0.44 0.42 0.20 0.949 −1.11 0.31 0.29 0.10 0.928

100 −0.85 0.41 0.38 0.17 0.939 −1.40 0.31 0.29 0.10 0.928

200 −0.52 0.37 0.35 0.13 0.945 −1.04 0.30 0.28 0.09 0.934

400 −0.61 0.32 0.31 0.11 0.939 −0.93 0.28 0.26 0.08 0.937

0.25 TRUE −1.10 0.26 0.25 0.07 0.938 −1.10 0.26 0.25 0.07 0.938

NAIVE −38.08 0.19 0.18 0.18 0.455 −15.92 0.24 0.23 0.08 0.879

25 4.05 1.14 1.43 1.30 0.951 −0.89 0.31 0.29 0.10 0.930

50 1.95 0.47 0.45 0.22 0.946 −1.01 0.31 0.29 0.10 0.929

100 −0.27 0.42 0.39 0.17 0.943 −1.32 0.31 0.29 0.10 0.934

200 −0.27 0.37 0.36 0.14 0.950 −1.00 0.30 0.29 0.09 0.934

400 −0.49 0.33 0.31 0.11 0.933 −0.90 0.28 0.26 0.08 0.938

0 TRUE −1.10 0.26 0.25 0.07 0.938 −1.10 0.26 0.25 0.07 0.938

NAIVE −50.58 0.19 0.18 0.29 0.217 −20.92 0.24 0.23 0.10 0.833

25 8.99 1.07 0.97 1.14 0.945 −0.74 0.32 0.30 0.10 0.929

50 3.20 0.50 0.48 0.25 0.943 −0.91 0.31 0.29 0.10 0.931

100 0.35 0.43 0.40 0.18 0.946 −1.23 0.31 0.29 0.10 0.933

200 −0.01 0.38 0.36 0.14 0.940 −0.95 0.30 0.29 0.09 0.933

400 −0.37 0.33 0.32 0.11 0.934 −0.88 0.28 0.26 0.08 0.940

−0.25 TRUE −1.10 0.26 0.25 0.07 0.938 −1.10 0.26 0.25 0.07 0.938

NAIVE −63.09 0.19 0.18 0.43 0.073 −25.92 0.24 0.23 0.12 0.775

25 18.31 2.47 2.38 6.12 0.939 −0.58 0.32 0.30 0.10 0.931

50 4.58 0.54 0.51 0.29 0.940 −0.80 0.32 0.30 0.10 0.932

100 1.02 0.44 0.42 0.19 0.950 −1.14 0.32 0.29 0.10 0.933

200 0.26 0.38 0.37 0.15 0.944 −0.91 0.30 0.29 0.09 0.936

400 −0.25 0.33 0.32 0.11 0.934 −0.86 0.28 0.27 0.08 0.942

−0.5 TRUE −1.10 0.26 0.25 0.07 0.938 −1.10 0.26 0.25 0.07 0.938

NAIVE −75.6 0.19 0.18 0.61 0.020 −30.92 0.24 0.23 0.15 0.714

25 9.03 2.92 3.10 8.53 0.928 −0.43 0.33 0.31 0.11 0.934

50 6.12 0.59 0.55 0.35 0.940 −0.69 0.32 0.30 0.10 0.939

100 1.72 0.45 0.43 0.21 0.947 −1.04 0.32 0.30 0.10 0.935

200 0.53 0.39 0.38 0.15 0.947 −0.87 0.30 0.29 0.09 0.938

400 −0.14 0.33 0.32 0.11 0.936 −0.84 0.28 0.27 0.08 0.942
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T A B L E 2 For 1000 simulated data sets of size N = 1000, the mean percent (%) bias, empirical standard error (SE),
average estimated standard error (ASE), mean squared error (MSE) and 95% coverage probability (CP) are given for 𝛽x .
Results are provided for linear regression using the true data (X , Y ) (TRUE), the error prone data (X⋆, Y⋆) (NAIVE), and
the proposed (X̂ , Ŷ ) estimated using a reliability subset (denoted by size of reliably subset n= 25, 50, 200, 400). Data are
generated according to Scenario 1 in Section 4, with 𝛽x = 5

𝝈T = 𝝈T̃ = 1 𝝈T = 𝝈T̃ = 0.5

𝝆TT̃ Method %Bias SE ASE MSE CP %Bias SE ASE MSE CP

0.5 TRUE −0.22 0.26 0.25 0.07 0.938 −0.22 0.26 0.25 0.07 0.938

NAIVE −45.06 0.21 0.21 5.12 0.000 −18.19 0.25 0.24 0.89 0.034

25 7.58 7.25 7.82 52.64 0.869 −0.16 0.44 0.43 0.20 0.939

50 2.73 1.14 1.08 1.33 0.901 −0.22 0.39 0.37 0.15 0.939

100 0.70 0.75 0.72 0.56 0.939 −0.34 0.36 0.34 0.13 0.933

200 0.59 0.55 0.54 0.31 0.950 −0.15 0.33 0.31 0.11 0.937

400 0.23 0.44 0.42 0.19 0.932 −0.15 0.30 0.28 0.09 0.937

0.25 TRUE −0.22 0.26 0.25 0.07 0.938 −0.22 0.26 0.25 0.07 0.938

NAIVE −47.55 0.22 0.22 5.70 0.000 −19.19 0.25 0.24 0.98 0.026

25 3.21 9.36 10.12 87.57 0.865 −0.09 0.46 0.45 0.21 0.937

50 3.12 1.20 1.14 1.47 0.906 −0.16 0.40 0.38 0.16 0.936

100 0.86 0.78 0.75 0.61 0.938 −0.3 0.36 0.34 0.13 0.937

200 0.63 0.57 0.56 0.33 0.948 −0.14 0.33 0.32 0.11 0.939

400 0.23 0.45 0.43 0.20 0.934 −0.15 0.30 0.28 0.09 0.933

0 TRUE −0.22 0.26 0.25 0.07 0.938 −0.22 0.26 0.25 0.07 0.938

NAIVE −50.06 0.22 0.22 6.31 0.000 −20.19 0.25 0.25 1.08 0.021

25 7.38 4.99 3.90 25.08 0.870 −0.01 0.48 0.46 0.23 0.934

50 3.56 1.28 1.21 1.66 0.909 −0.10 0.41 0.39 0.17 0.927

100 1.07 0.81 0.78 0.66 0.935 −0.26 0.37 0.35 0.13 0.937

200 0.68 0.59 0.58 0.35 0.949 −0.13 0.33 0.32 0.11 0.941

400 0.23 0.46 0.44 0.21 0.933 −0.15 0.30 0.28 0.09 0.936

−0.25 TRUE −0.22 0.26 0.25 0.07 0.938 v0.22 0.26 0.25 0.07 0.938

NAIVE −52.57 0.23 0.22 6.96 0.000 −21.19 0.26 0.25 1.19 0.014

25 12.37 8.12 7.76 66.31 0.869 0.08 0.50 0.48 0.25 0.931

50 4.09 1.37 1.28 1.93 0.910 −0.04 0.42 0.40 0.18 0.929

100 1.31 0.85 0.82 0.72 0.940 −0.21 0.37 0.35 0.14 0.933

200 0.74 0.61 0.59 0.37 0.946 −0.12 0.34 0.32 0.11 0.942

400 0.24 0.47 0.45 0.22 0.937 −0.15 0.30 0.29 0.09 0.940

−0.5 TRUE −0.22 0.26 0.25 0.07 0.938 −0.22 0.26 0.25 0.07 0.938

NAIVE −55.09 0.23 0.23 7.64 0.000 −22.2 0.26 0.25 1.30 0.010

25 5.36 10.10 10.34 102.1 0.861 0.17 0.52 0.49 0.27 0.931

50 4.71 1.49 1.36 2.29 0.907 0.03 0.43 0.41 0.19 0.928

100 1.60 0.88 0.85 0.79 0.941 −0.15 0.38 0.36 0.14 0.932

200 0.81 0.63 0.61 0.39 0.939 −0.10 0.34 0.32 0.12 0.941

400 0.26 0.47 0.46 0.22 0.940 −0.14 0.30 0.29 0.09 0.938



SHAW et al. 279

T A B L E 3 For 1000 simulated data sets of size N = 1000, the mean percent (%) bias, empirical standard error (SE),
average estimated standard error (ASE), mean squared error (MSE), and 95% coverage probability (CP) are given for (𝛽x , 𝛽z).
Results are provided for linear regression using the true data (X , Z, Y ) (TRUE), (X⋆, Z, Y⋆) (NAIVE), and the proposed
(X̂ ,Z, Ŷ ) estimated with a reliability subset (Method denoted by size of reliably subset n= 25, 50, 200, 400). Data are generated
according to Scenario 2 in Section 4, with 𝛽x = 1, 𝛽z = −1 and 𝜎T = 𝜎T̃ = 1

𝜷x 𝜷z

𝝆xz 𝝆TT̃ Method %Bias SE ASE MSE CP %Bias SE ASE MSE CP

0.5 0.5 TRUE −1.05 0.29 0.29 0.08 0.955 0.39 0.29 0.29 0.08 0.949

NAIVE −29.39 0.19 0.19 0.12 0.686 14.61 0.27 0.27 0.09 0.913

25 1.81 3.04 6.51 9.25 0.970 −1.19 1.36 3.00 1.85 0.967

50 2.90 0.63 0.63 0.40 0.967 −1.59 0.41 0.42 0.17 0.960

100 1.11 0.50 0.49 0.25 0.959 −0.84 0.37 0.37 0.14 0.945

200 −0.01 0.44 0.44 0.20 0.945 0.02 0.35 0.35 0.12 0.945

400 −0.41 0.38 0.38 0.15 0.952 0.01 0.32 0.32 0.10 0.955

0.25 TRUE −1.05 0.29 0.29 0.08 0.955 0.39 0.29 0.29 0.08 0.949

NAIVE −43.59 0.20 0.19 0.23 0.393 21.73 0.27 0.27 0.12 0.886

25 5.93 1.56 2.94 2.43 0.959 −3.35 0.79 1.45 0.63 0.962

50 5.02 0.64 0.64 0.41 0.962 −2.64 0.41 0.43 0.17 0.960

100 2.33 0.53 0.51 0.28 0.957 −1.43 0.38 0.38 0.15 0.945

200 0.47 0.45 0.45 0.20 0.947 −0.21 0.35 0.35 0.12 0.942

400 −0.22 0.38 0.39 0.15 0.948 −0.08 0.32 0.32 0.10 0.955

0 TRUE −1.05 0.29 0.29 0.08 0.955 0.39 0.29 0.29 0.08 0.949

NAIVE −57.78 0.20 0.19 0.37 0.139 28.85 0.27 0.28 0.16 0.817

25 25.41 3.61 6.84 13.07 0.946 −13.09 1.92 3.66 3.70 0.961

50 7.48 0.68 0.68 0.47 0.955 −3.87 0.43 0.45 0.19 0.961

100 3.47 0.55 0.53 0.30 0.961 −1.99 0.39 0.38 0.15 0.944

200 0.93 0.46 0.46 0.21 0.946 −0.42 0.36 0.35 0.13 0.942

400 −0.04 0.39 0.39 0.15 0.947 −0.17 0.32 0.32 0.10 0.954

0 0.5 TRUE −0.91 0.24 0.25 0.06 0.955 0.10 0.25 0.25 0.06 0.947

NAIVE −25.76 0.18 0.18 0.10 0.728 0.14 0.25 0.26 0.06 0.950

25 3.35 0.59 0.59 0.35 0.964 0.18 0.26 0.27 0.07 0.946

50 3.00 0.83 0.81 0.69 0.960 0.01 0.26 0.28 0.07 0.943

100 0.34 0.39 0.38 0.15 0.952 −0.08 0.27 0.27 0.07 0.946

200 −0.11 0.36 0.35 0.13 0.941 0.17 0.27 0.27 0.07 0.943

400 −0.47 0.31 0.31 0.09 0.949 0.03 0.25 0.25 0.06 0.952

0.25 TRUE −0.91 0.24 0.25 0.06 0.955 0.10 0.25 0.25 0.06 0.947

NAIVE −38.18 0.18 0.18 0.18 0.450 0.14 0.25 0.26 0.06 0.950

25 10.71 1.53 1.86 2.34 0.956 0.42 0.27 0.31 0.07 0.948

50 −2.17 1.42 1.50 2.01 0.956 0.22 0.27 0.30 0.07 0.946

100 1.01 0.40 0.39 0.16 0.953 −0.07 0.27 0.27 0.07 0.944

200 0.19 0.36 0.36 0.13 0.942 0.16 0.27 0.27 0.07 0.943

400 −0.35 0.31 0.31 0.10 0.950 0.02 0.25 0.25 0.06 0.952

(Continues)
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T A B L E 3 (Continued)

𝜷x 𝜷z

𝝆xz 𝝆TT̃ Method %Bias SE ASE MSE CP %Bias SE ASE MSE CP

0 TRUE −0.91 0.24 0.25 0.06 0.955 0.10 0.25 0.25 0.06 0.947

NAIVE −50.59 0.18 0.18 0.29 0.201 0.14 0.26 0.26 0.07 0.950

25 4.43 2.82 4.47 7.93 0.944 0.24 0.29 0.42 0.09 0.947

50 0.78 0.97 0.81 0.95 0.953 0.19 0.27 0.28 0.07 0.950

100 1.66 0.41 0.41 0.17 0.948 −0.06 0.27 0.27 0.07 0.946

200 0.48 0.37 0.37 0.13 0.946 0.16 0.27 0.27 0.07 0.945

400 −0.24 0.31 0.32 0.10 0.953 0.01 0.25 0.25 0.06 0.953

parameters 𝜎T = 𝜎T̃ = 0.5. We see that for the Naive estimator, there is less bias and smaller MSE for both 𝛽x and 𝛽z with
the smaller measurement error variance; however the Naive estimator has low coverage due to its bias for both 𝛽x and 𝛽z,
whereas the proposed method again maintains close to 95% coverage in all scenarios. Supplementary Table S2 presents
results for cohort size N = 1000 and reliability subset sizes n= 50, 100, 200, 500, 1000. The performance of the RC estima-
tor improves with the larger reliability sizes, as expected. The coverage of the Naive estimator gets worse, as this estimator
becomes more certain about the wrong thing. Supplementary Table S3 considers the effects of negative correlation for
the error terms T in X⋆ and T̃ in Y⋆, allowing 𝜌TT̃ = −0.25,−0.5. Patterns in this case are similar to Table 3. The Naive
estimator had poor coverage; whereas the proposed method maintained good coverage and generally a similar or better
MSE for reliability subsets of size 50 or larger, with percent bias diminishing n increased. Supplementary Table S4 consid-
ered the relative performance for larger values of 𝛽. Similar to the results in Table 2, the Naive estimator had larger bias
and lower coverage, whereas the proposed method maintained good coverage and for scenarios with n> 25 generally had
competitive or better MSE. The proposed method had larger MSE and an inflated estimate of SE for the small reliability
subset size n= 25.

For Scenario 3, we simulated nonnormal distributions for the error and covariates. We consider a similar simulation to
Scenario 1, letting 𝜎T = 𝜎T̃ = 1, but consider both a mixture of two normals and a log-normal distribution. Supplementary
Figure S1 shows these distributions. Simulation results are presented in Supplementary Table S5. The proposed method
still provides estimates with diminishing small sample bias for both distributions as n increased; but for the log-normal
errors, performance is noticeably better for the larger reliability subsets. For the highly skewed log-normal distribution,
𝛽 estimates for the scenarios with reliability subsets smaller than 200 have some small-sample bias. These were generally
caused by a few extreme values across the simulations, and the median estimates were much closer to being unbiased
(data not shown).

Simulations for case 2 are provided in Supplementary Tables S6a and S6b. In addition to the True and Naive meth-
ods, the Proposed results are compared with those from the related moment-based correction method by Shepherd and
Yu.7 Parameter values for the simulations for this scenario are chosen from those explored by Shepherd and Yu for direct
comparison. The proposed regression calibration and the method of Shepherd and Yu7 are both a type of moment cor-
rection estimate and are asymptotically equivalent for the linear error models we consider in cases 1 and 2. For the case
of simple univariate regression they can be made equivalent by choosing the same estimators of the necessary moments
(Table S6a). For multivariate regression, the two methods differ on finite samples but had comparable performance
(Table S6b).

Shepherd and Yu7 only considered the setting where there was a validation subset available; however, we extend their
method to the setting of case 1, where the true values are never observed on anyone, by using the moment estimators
provided in the Appendix for the necessary nuisance parameters. Simulation results comparing regression calibration
with the moment correction estimates for case 1 are shown in Supplemental Table S7. We see that the two methods again
generally perform well for n> 50 and provide similar estimates, with low small sample bias and very comparable MSE
across the scenarios. There was some instability for n= 25; there appears to be a slight advantage of smaller MSE for the
proposed method over the moment correction method for this small reliability size.

In the next section, we examine the performance of regression calibration for case 3, where the measurements X⋆ and
Y⋆ have systematic bias as well as correlated errors, after considering a motivating data example.
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5 NUTRITIONAL EPIDEMIOLOGY DATA EXAMPLE

Tools for dietary assessment of usual intake rely primarily on self-reported data from instruments like the food frequency
questionnaire (FFQ). The FFQ consists of a list of foods and a frequency of response for how often each food was consumed
over a specified period, such as the last 3 months, and is translated into specific intakes using a nutrient database. The
FFQ has been shown for many nutrients of interest, such as energy and protein, to contain systematic error associated
with subject characteristics (body mass index [BMI], gender, age, etc), as well as within person variability. Despite these
known measurement error problems, the FFQ is the most common diet instrument in large cohort studies9 because of
its low cost. Measurement error for different nutrient intakes assessed with the same FFQ are likely to be correlated. We
consider this problem examining the association between protein density and total caloric intake. We consider data from
the usual diet (control) arm of the Women’s Health Initiative (WHI) Dietary Modification (DM) Trial, which measured
dietary intake on 29 294 women using an FFQ. Because the baseline FFQ was used to determine eligibility in the DM trial
by requiring a minimum of 32% estimated calories from fat, the data for this analysis were from 1 year after enrollment, at
which time another FFQ was obtained. The DM trial also included a Nutritional Biomarker Substudy (NBS, N= 544). The
NBS collected self-reported intake along with several objective biomarkers on randomly selected weight-stable women,
including doubly labeled water and urinary nitrogen, with repeat measures on a subset (n = 110). These biomarkers are
considered unbiased for short-term usual intake of energy and protein, respectively. See WHIscience.org for information
regarding obtaining WHI study data. Results of the NBS study are reported by Neuhouser et al.22 They found BMI to be a
strong determinant of subject-specific bias, with underreporting of energy and protein intake increasing with increasing
BMI.

We consider the regression of the log-transformed energy (Y ) on log-transformed protein density (X) and BMI (Z).
Here we assume we have the measurement error structure of case 3 in Section 2.3, where the main outcome and exposure
of interest have both systematic bias and potentially correlated measurement error (the FFQ on the DM cohort), along with
an objective marker with independent classical measurement error for both these variables on a subset (the energy and
protein biomarkers in the NBS subcohort). We compare the regression coefficients and normal 95% confidence intervals
for log(protein density) and BMI, 𝛽x and 𝛽z respectively, for regressions using the naive approach (based on error-prone
self-reported FFQ data only) and the proposed regression calibration method. From the naive analysis using data from
the entire DM cohort, (𝛽x, 𝛽z) = (−0.14, 0.004) (P < .001,P < .001). Applying the proposed method to calibrate the FFQ
data on the large cohort, we found 𝛽 = (𝛽x, 𝛽z) = (−0.31, 0.012) (P = .43,P < .001). The coefficient for protein (X) appears
deattenuated but is no longer significant due to a large increase in the standard errors. The coefficient of BMI is also larger
compared with the analysis based on self-report, suggesting BMI-related bias in self-reported FFQ data was biasing both
coefficients of the regression.

Since the biomarkers for protein and energy obey the classical measurement error model, we could obtain an alter-
nate consistent estimator of 𝛽 using a complete case analysis on the NBS cohort with covariate-only regression calibration
to adjust for the error in the protein biomarker and no necessary adjustments for the energy biomarker as the out-
come. Standard errors are estimated using the bootstrap method. Using regression calibration on the biomarker subset
one has (𝛽x, 𝛽z) = (−0.34, 0.009) (P = .07,P < .001). In this case, because the biomarkers were a much more precise and
accurate measure of the diet,22 the regression using only this data had a stronger strength of association despite being
on a much smaller subset. One could attempt to improve the efficiency by using a technique from the survey litera-
ture, called raking or survey calibration, to combine the information from the two estimators.23,24 Using the approach
of Lumley et al,23 the proposed estimating equation based on the corrected FFQ data is used to create auxiliary vari-
ables, known on the whole cohort, that may be used to augment the efficiency of the consistent, regression calibration
estimating equation on the biomarker subset. This approach preserves the consistency of the complete case estimator.
The survey package in R was used to implement the raking procedure.25,26 The resulting raking estimator (𝛽x, 𝛽z) =
(−0.35, 0.009) (P = .07,P < .001) had a similar strength of association to the complete case estimator, confirming that for
this example, the error-prone FFQ provided very little additional information regarding the association between the two
dietary intakes. An R code file demonstrating the implemented estimators on a similar, simulated data set is provided on
GitHub (https://github.com/PamelaShaw/AuditRC/).

To better understand the performance of the proposed method under the measurement error structure seen in the
WHI example, we built a simulation model based on the WHI data. We generated 1000 simulated WHI DM cohorts
(N = 25 000), that each included a biomarker subset (n= 500) of which 20% (n= 100) had repeat measures. The Supple-
mentary Materials Web Appendix provides further details of the parameters used for this simulation and how they were
identified from the WHI data. In short, for the main cohort and biomarker subset, a regression model for energy as a
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T A B L E 4 For 1000 simulated data sets, the mean percent (%) bias, average estimated standard error (ASE), empirical standard error
(SE), mean squared error (MSE), and coverage probability for the 95% confidence intervals (CP) are given for (𝛽x , 𝛽z), the linear regression
coefficients for protein density (log-scale) and BMI using the unadjusted self-reported data on the large cohort (Naive), the proposed
regression calibration method (Proposed), the unadjusted biomarker values on subset (BM Naive), and a complete case regression
calibration method that adjusts for the classical measurement error in the biomarker for log-protein density on the biomarker subset (BM
RC). The True method are the results based on the (X , Y , Z), that is, (log-energy, log-protein, BMI), measured without error

𝜷x 𝜷z

Method %Bias SE ASE 100*MSE CP %Bias SE ASE 100*MSE CP

True 0.0410 0.0062 0.0064 0.0039 0.957 −0.0106 0.0002 0.0002 0.0000 0.951

Naive 16.2380 0.0099 0.0099 0.1069 0.114 −80.1324 0.0004 0.0004 0.0110 0.000

Proposed −1.2704 0.0853 0.0806 0.7278 0.934 0.2963 0.0025 0.0025 0.0006 0.944

BM Naive −45.8489 0.0363 0.0360 0.9069 0.326 −0.2303 0.0018 0.0018 0.0003 0.959

BM RC 3.0050 0.0749 0.0860 0.5642 0.936 −0.3457 0.0019 0.0019 0.0003 0.945

function of protein density and BMI, as well as measurement error parameters for the observed self-reported FFQ and
biomarker versions of protein density and energy, were fit using the observed data. Correlation between the errors of the
self-reported protein density and energy are identifiable using the biomarker data. A linear model for the dependence
of the error on BMI was assumed and fit to the data. The resulting deattenuated strength of association between the
true X and Y was of similar magnitude for this simulation and the WHI data. The simulation also reproduced the large
attenuation seen in the BMI coefficient in the naive analysis of the self-reported data.

Table 4 compares the estimates of 𝛽 for the regression of log energy (Y) on log protein density (X) and BMI (Z) for the
regressions based on: the true (X , Y ), the error-prone self-reported estimates (X⋆, Y⋆), and the proposed regression cali-
bration method incorporating the biomarker observations (XB, Y B). We also consider the results using just the regression
of Y B on (XB, Z) on the biomarker subset, one estimate ignoring and one accommodating for classical measurement error
in XB. In this case, since the error in both biomarker observations for Y and X follows the classical measurement error
model, the error in Y can be ignored and the usual calibration of only X provides a consistent estimate of 𝛽 in the biomarker
subset. The error in the biomarkers for these nutrients are generally considered smaller than that for self-report, so this
analysis addresses the question of whether, despite the smaller sample, this analysis may perform better in terms of MSE
relative to the proposed and naive analysis. Standard errors for the regression calibration methods were obtained via the
bootstrap with 500 bootstrap samples.

The simulation shows the proposed method was close to unbiased, with a mean bias of −1.3% for 𝛽x and 0.30% for
𝛽z, but it also had large MSE, particularly for 𝛽x due to the amount of uncertainty around the slope parameters. The
bootstrapped SE were in good agreement with the empirical standard errors. The relative performance of the methods
for the simulated analyses in Table 4, in terms of the relative size of the standard errors for the 𝛽 estimates across the
methods, is similar to that seen in the data analysis. Overall, these simulations show that for the general measurement
error model discussed in case 3, the proposed method had good coverage and produced estimates with small bias. They
also provide additional evidence that the magnitudes of the error seen in the WHI nutrient data could have led to con-
fidence intervals that included zero despite a true underlying relationship between the nutrients of interest. The naive
analysis (ignoring measurement error) had large bias in the regression coefficient for the precisely observed BMI and
overall poor coverage for both slope parameters. The analysis using regression calibration for covariate measurement only
in the biomarker subset had smaller mean squared error than the proposed method calibrating both exposure and out-
come implemented without raking. We note in a simulation where the random variance in the biomarker measure of X
increased to 0.30, which decreased the reliability coefficient from 0.53 to 0.30, the proposed method performed better than
the estimator based on the biomarker data alone (data not shown). Thus, the value of using the self-report on the larger
cohort depended on the relative accuracy with that instrument and the biomarker. A similar phenomenon was observed
by Keogh et al.16 In this example, due to the ease of implementation we used bootstrapped standard errors. We examined
the relative performance of our method when using the bootstrap vs the sandwich estimate of the variance more gener-
ally. We considered the same scenario as shown in the upper left quadrant of Table 3, where samples sizes were smaller
and where we might expect more differences between performance of the two standard error estimation approaches.
Results are shown in Supplementary Table S8. Generally the bootstrap performed well and matched the empirical SE for
audit subset sizes of 200 or larger. For smaller audit subsample sizes, particularly n= 25 or 50, the bootstrap subset would
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occasionally produce a spuriously large estimate, leading to some instability. We note for the data example simulations
shown in Table 4, the bootstrap performed well compared with the empirical SE which had large sample sizes for both
the cohort and subsample. The sandwich estimate performed well across all scenarios studied.

6 DISCUSSION

In this article we have described a regression calibration approach to account for correlated measurement error in both
the outcome and the exposure. Our approach is flexible, simple to implement, and can be applied using reliability or
validation samples. Here, we applied the methods assuming a randomly determined subset in the validation or reliability
subset. The methods are also straightforward to apply for a design-based sample, along with inverse probability weighting
to adjust the moment or estimating equations relying on the subsample. Regression calibration methods are popular in
practice, and this extension allows their implementation to an important problem. Although methods for accounting for
measurement error have been widely studied, there has been less focus on correlated measurement error on the outcome
and exposure. Correlated measurement error is not uncommon; we have seen it from audits of observational data and in
nutritional epidemiology settings.

As with all measurement error methods, there are variance/bias trade-offs with using our new method. With small
validation subsets, the reduction in bias may not outweigh the increased variance in estimates, and in some scenarios,
naive estimates may have lower mean-squared error than corrected estimates even with large sample sizes. In applied
settings, raking can be used as a method that could potentially improve efficiency by combining the proposed estimator
with that of a consistent estimator on the validation/biomarker subset; though in large error settings, as seen in the WHI
data example, raking may not provide appreciable gains in efficiency over the compete case analysis of the validation
data alone. The efficiency gain from raking comes from the correlation of the auxiliary variable used in raking with the
influence function from the model fit with the error-free data.23 This correlation can be low in the cases where there is a
large amount of measurement error. In the examples studied, the size of the measurement error relative to the variance
of the true outcome and covariate subject to error, the correlation between the error in the outcome and exposure, and
the size of the validation subset all affected the relative performance of the methods discussed. Simulation can be used
as a tool to better understand how the anticipated measurement error structure for a given setting could affect precision
and relative performance of the proposed method for different sizes of the validation subset.

For settings where a validation subset is available, a very general error model can be assumed for the data since com-
plete data on the validation subset can be used to estimate the nuisance parameters; though here we must also assume
covariates that determine the biased components of the error are observed and modeled correctly. For settings where
error-free covariates cannot be observed, the methods can still be applied so long as a second error prone measurement
whose errors are independent of the first is available. It is interesting to note that the errors in observed values (X⋆, Y⋆)
need not be unbiased (mean zero) so long as a second measurement with independent and unbiased errors is available on
at least a subset. When only repeat measures of the same error-prone instrument are observed, the nuisance parameters
necessary for the proposed method are only identifiable if the errors are independent of the true values.

Development of the proposed methods for other types of outcomes is an important direction for future research. More
work for this setting is also needed on methods to determine a sufficient size of the validation/reliability subset, as well as
how to select individuals into the reliability/validation subset for more efficient validation substudy designs. Efficiency
will be key for these methods to be applied to practically sized validation/reliability subsets without undoing the gains in
bias-correction by increasing the variability in the parameter estimates.
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APPENDIX . STANDARD ERROR ESTIMATION

Standard errors of 𝛽 can be computed by applying the M-estimation technique and obtaining the sandwich variance
estimate (Stefanski and Boos, 2002). A vector 𝜓(𝜃) of stacked estimating equations are formed for the parameter vector
𝜃, which includes both the parameters of interest (𝛽) and the nuisance parameters from the measurement error model.
The estimates 𝜃̂ can be obtained by solving the equations

∑N
i=1 𝜓i(𝜃) = 0 and a sandwich estimator for the variance of 𝜃̂ is

estimated as V(𝜃̂) = A(𝜃̂)−1B(𝜃̂)A(𝜃̂)−T∕N, where

A(𝜃̂) = − 1
N

N∑
i=1

𝜕𝜓i(𝜃)
𝜕𝜃

and B(𝜃̂) = 1
N

N∑
i=1
𝜓i(𝜃)𝜓i(𝜃)T .

This technique incorporates the extra variance in 𝛽 due to the uncertainty in the nuisance parameters. The first deriva-
tive of𝜓i(𝜃) can be computed either directly with the assistance of software (eg, MATLAB) or by numerical differentiation.
The variance of 𝛽 corresponds to corresponding submatrix of the V(𝜃̂) matrix.

In this section we provide the estimating equation 𝜓(𝜃) for each of the cases considered in Section 3. In the expres-
sions below, the half-vectorization operator vech(A) is used to represent a symmetric matrix A as a vector by stacking the
columns of the lower triangular portion of the matrix one below the other. In this manner, we create a vector of unique
elements for the nuisance parameters in the model that are variance/covariance matrices.

For case 1, the reliability subset, one has the parameter vector 𝜃 = (𝛽0, 𝛽x, 𝛽z, 𝜇X⋆ ,ΣX∗ , 𝜇Z,ΣZ,ΣX⋆Z,ΣT ,ΣT T̃). From
these parameters one can also derive other parameters specified in the calibration equations; namely 𝜇X = 𝜇X⋆ , ΣZX =
ΣZX⋆ , ΣX⋆X = ΣX⋆ − ΣT , and ΣX⋆T̃ = ΣTT̃ . We define

𝜓i(𝜃) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Ŷi − 𝛽0 − 𝛽xX̂ i − 𝛽zZi)(1 − Vi) + (Ŷ R
i1 + Ŷ R

i2 − 2𝛽0 − 2𝛽xX̂R
i − 2𝛽zZi)Vi

(Ŷi − 𝛽0 − 𝛽xX̂ i − 𝛽zZi)X̂ i(1 − Vi) + (Ŷ R
i1 + Ŷ R

i2 − 2𝛽0 − 2𝛽xX̂R
i − 2𝛽zZi)X̂

R
i Vi

(Ŷi − 𝛽0 − 𝛽xX̂ i − 𝛽zZi)Zi(1 − Vi) + (Ŷ R
i1 + Ŷ R

i2 − 2𝛽0 − 2𝛽xX̂R
i − 2𝛽zZi)ZiVi

(X∗
i1 + X∗

i2Vi)∕(1 + Vi) − 𝜇X⋆

vech[{(X∗
i1 − 𝜇X )′(X∗

i1 − 𝜇X ) − ΣX∗} + {(X∗
i2 − 𝜇X )′(X∗

i2 − 𝜇X ) − ΣX∗}Vi]
Zi − 𝜇Z

vech[(Zi − 𝜇Z)′(Zi − 𝜇Z) − ΣZ]
vech[{(X∗

i1 − 𝜇X )′(Zi − 𝜇Z) − ΣX⋆Z} + {(X∗
i2 − 𝜇X )′(Zi − 𝜇Z) − ΣX⋆Z}Vi]

vech[{(X∗
i1 − X∗

i2)
′(X∗

i1 − X∗
i2)∕2 − ΣT}Vi]

vech[{(X∗
i1 − X∗

i2)
′(Y∗

i1 − Y∗
i2)∕2 − ΣT T̃}Vi]

and the X̂ i’s and Ŷi’s in the first two equations of𝜓i(𝜃) are functions of 𝜃, as follows. Subjects will have a different estimate
of X̂ and Ŷ , depending on whether they are in the reliability subset. We also take advantage of the parameter equalities
implied by the measurement error assumptions, as described above.

For subjects with only one measure,

X̂ i = 𝜇X +
[
ΣX ΣZX

][ ΣX∗ ΣX⋆Z

ΣZX⋆ ΣZ

]−1 [
X∗

i − 𝜇X

Zi − 𝜇Z

]
,

c∗i = E(T̃|X∗
i ,Z) =

[
ΣT̃T 0

][ ΣX∗ ΣX⋆Z

ΣZX⋆ ΣZ

]−1 [
X∗

i − 𝜇X

Zi − 𝜇Z

]
, and

Ŷi = Y∗
i − c∗i .

For subjects with reliability measure,
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XR
i = 𝜇X +

[
ΣX ΣX ΣZX

] ⎡⎢⎢⎢⎣
ΣX∗ ΣX ΣXZ

ΣX ΣX∗ ΣXZ

ΣZX ΣZX ΣZ

⎤⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎣

X∗
i1 − 𝜇X

X∗
i2 − 𝜇X

Zi − 𝜇Z

⎤⎥⎥⎥⎦ ,

c∗ij = E(T̃ij|X∗
i1,X

∗
i2,Z) =

[
ΣT̃ijX⋆

i1
ΣT̃ijX⋆

i2
0
] ⎡⎢⎢⎢⎣

ΣX∗ ΣX ΣXZ

ΣX ΣX∗ ΣXZ

ΣZX ΣZX ΣZ

⎤⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎣

X∗
i1 − 𝜇X

X∗
i2 − 𝜇X

Zi − 𝜇Z

⎤⎥⎥⎥⎦ ,
Ŷ R

ij = Y∗
ij − c∗ij, for j = 1, 2.

Note, by assumption, one has Cov(T̃ij, X̃
⋆
ij′ ) = Cov(T̃ij,Tij′ ), which equals 0 for j≠ j′.

For case 2, the validation subset, the parameter vector also includes the additional parameters ΣTZ, ΣT̃Z and a
different M-estimation vector that allows for a more general covariance structure between (X⋆, Z) and (T, T̃). In this
case, T and T̃ are allowed to be correlated with Z. We also use the equality ΣTZ = ΣX⋆Z − ΣXZ. In this case, we define
𝜃 = (𝛽0, 𝛽x, 𝛽z, 𝜇X⋆ ,ΣX∗ , 𝜇Z,ΣZ,ΣX⋆Z,ΣT ,ΣT T̃ ,ΣXZ,ΣT̃Z) and

𝜓i(𝜃) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ŷi − 𝛽0 − 𝛽xX̂ i − 𝛽zZi

(Ŷi − 𝛽0 − 𝛽xX̂ i − 𝛽zZi)X̂ i

(Ŷi − 𝛽0 − 𝛽xX̂ i − 𝛽zZi)Zi

X⋆
i (1 − Vi) + XiVi − 𝜇X⋆

vech[(X∗
i − 𝜇X )′(X∗

i − 𝜇X ) − ΣX∗ ]
Zi − 𝜇Z

vech[(Zi − 𝜇Z)′(Zi − 𝜇Z) − ΣZ]
vech[(X∗

i − 𝜇X )′(Zi − 𝜇Z) − ΣX⋆Z]
vech[{(X∗

i − Xi)′(X∗
i − Xi) − ΣT}Vi]

vech[{(X∗
i − Xi)′(Y∗

i − Yi) − ΣT T̃}Vi]
vech[{(Xi − 𝜇X )′(Zi − 𝜇Z) − ΣXZ}Vi]
vech[{(Y∗

i − Yi)(Zi − 𝜇Z) − ΣT̃Z}Vi].

Here, Ŷi = Y⋆
i − ĉi, where ĉi = Ê[T̃|X⋆,Z] is provided by Equation (5) and X̂ is defined as in Equation (6).

For case 3, the parameters needed to estimate X̂ and c⋆ can be estimated by standard linear regression on the
biomarker subset and standard errors for the proposed method in the text (Sections 3 and 4) were calculated using the boot-
strap. We provide stacked estimating equations for the sandwich variance estimate, whose performance was compared
with the bootstrap variance estimator in Supplementary Table S8.

We estimate X̂ i with this regression on the biomarker subset X̂ = E[XB|X⋆,Z] = 𝛼̃0 + 𝛼̃xX⋆ + 𝛼̃zZ. We estimate Ŷi =
Y⋆

i − ĉ⋆i , where c⋆ is obtained from the regression c⋆ = E[Y⋆ − YB|X⋆,Z] = 𝛾̃0 + 𝛾̃xX⋆ + 𝛾̃zZ. We define the parameter
vector 𝜃 = (𝛽0, 𝛽x, 𝛽z, 𝛼̃0, 𝛼̃x, 𝛼̃z, 𝛾̃0, 𝛾̃x, 𝛾̃z) and

𝜓i(𝜃) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ŷi − 𝛽0 − 𝛽xX̂ i − 𝛽zZi

(Ŷi − 𝛽0 − 𝛽xX̂ i − 𝛽zZi)X̂ i

(Ŷi − 𝛽0 − 𝛽xX̂ i − 𝛽zZi)Zi

Vi(XBi − 𝛼̃0 − 𝛼̃xX⋆
i − 𝛼̃ZZi)

Vi(XBi − 𝛼̃0 − 𝛼̃xX⋆
i − 𝛼̃ZZi)X⋆

i

Vi(XBi − 𝛼̃0 − 𝛼̃xX⋆
i − 𝛼̃ZZi)Zi

Vi(Y⋆
i − YBi − 𝛾̃0 − 𝛾̃xX⋆

i − 𝛾̃ZZi)
Vi(Y⋆

i − YBi − 𝛾̃0 − 𝛾̃xX⋆
i − 𝛾̃ZZi)X⋆

i

Vi(Y⋆
i − YBi − 𝛾̃0 − 𝛾̃xX⋆

i − 𝛾̃ZZi)Zi.


