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Measurement error and misclassification of variables frequently occur in epi-
demiology and involve variables important to public health. Their presence can
impact strongly on results of statistical analyses involving such variables. How-
ever, investigators commonly fail to pay attention to biases resulting from such
mismeasurement. We provide, in two parts, an overview of the types of error
that occur, their impacts on analytic results, and statistical methods to miti-
gate the biases that they cause. In this first part, we review different types of
measurement error and misclassification, emphasizing the classical, linear, and
Berkson models, and on the concepts of nondifferential and differential error.
We describe the impacts of these types of error in covariates and in outcome vari-
ables on various analyses, including estimation and testing in regression models
and estimating distributions. We outline types of ancillary studies required to
provide information about such errors and discuss the implications of covari-
ate measurement error for study design. Methods for ascertaining sample size
requirements are outlined, both for ancillary studies designed to provide infor-
mation about measurement error and for main studies where the exposure of
interest is measured with error. We describe two of the simpler methods, regres-
sion calibration and simulation extrapolation (SIMEX), that adjust for bias in
regression coefficients caused by measurement error in continuous covariates,
and illustrate their use through examples drawn from the Observing Protein and
Energy (OPEN) dietary validation study. Finally, we review software available
for implementing these methods. The second part of the article deals with more
advanced topics.
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1 | INTRODUCTION

Measurement error and misclassification of variables are frequently encountered in epidemiology and involve vari-
ables of considerable importance in public health such as smoking habits,! dietary intakes,? physical activity,®> and air
pollution.* Their presence can impact strongly on the results of statistical analyses that involve such variables. However,
more often than not, investigators do not pay serious attention to the biases that can result from such mismeasurement.’
We provide in two parts an overview of the types of error that can occur, their impacts on results from analyses, and
statistical methods to mitigate the biases that they cause. Throughout, we endeavor to retain a utilitarian approach and
to relate theory to practice.

Our focus throughout is on studies which are aimed at either describing the distribution of variables in a population
or at understanding the relationships between variables, that is, on etiology. In studies in which the aim is instead to
derive a prediction model, the considerations surrounding error-prone variables can be quite different. We also focus on
relationships between a single outcome and covariates, excluding longitudinal data modeling and also survival problems
with time-varying covariates.

In this first part, we provide a description of the most commonly used statistical models for measurement error and
misclassification (Section 2), and the impact of such errors on estimated coefficients in regression models frequently used
in epidemiology (Section 3). We describe ancillary studies needed to provide information about the measurement error
model and an overview of reference measurements available for some of the most common exposures encountered in
epidemiology that are measured with error (Section 4). Study design issues that are impacted by measurement error are
discussed and we outline calculations for determining sample size requirements and power (Section 5). We then present
two of the simpler—and more commonly used—methods used to adjust for the bias caused by measurement error in
estimated regression coefficients: regression calibration (RC) and simulation extrapolation (SIMEX, Section 6). Available
software for implementing such methods is listed (Section 7). The methods are illustrated by examples from a real study,
somewhat simplified so as to retain clarity.
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There have been a number of tutorial articles, chapters, and books on measurement error. The book of Carroll et al®
provides a wide-ranging statistical account of issues of measurement error. The book of Buonaccorsi’ provides background
and detail on many of the topics that we discuss in this article, including misclassification and measurement error in
linear models, and Gustafson’s book® focuses on Bayesian analysis methods and considers both measurement error and
misclassification. The recent book of Yi°® focuses especially on survival analysis and longitudinal settings, which we do
not cover in our two articles. The tutorial article of Keogh and White!? discusses several methods for measurement error
correction with a focus on nutritional epidemiology, Armstrong!! provides an overview of the impact of measurement
error in studies of environmental and occupational exposures, and there have been many others focusing on specific
aspects. A detailed account of issues surrounding error in covariates is given in a chapter by Buzas et al,'? covering types
of error, study design considerations, and methods of analysis, with an emphasis on likelihood-based methods.

Our two articles provide a comprehensive overview of measurement error issues, from describing types of error and its
impact to study design and analysis, with an emphasis on providing practical guidance. Specific topics covered in this first
part that do not appear in the chapter of Buzas et al'? include errors in the outcome variable, the effects of measurement
error on estimating distributions, clarifications concerning the effects of Berkson error in multivariable models, a review
of reference measurements used in different areas of epidemiology, discussion of sample size for ancillary studies, and
an overview of software for RC and SIMEX. In Part 2, we additionally consider a number of advanced topics including
additional methods to address covariate error, methods to estimate a distribution of an error prone covariate, methods to
address outcome error, mixtures of misclassification and classical error, mixtures of Berkson and classification error, and
approaches to handle imperfect or a lack of validation data.

2 | THE MAIN TYPES OF ERROR

In the statistical and epidemiological literature, one can find two separate terms for errors in variables: measurement
error and misclassification. The former term is typically used for continuous variables, such as dietary intakes, and the
latter term is used for categorical (including discrete) variables such as level of educational attainment. In this section,
we describe the types of error that occur in continuous and categorical variables.

Suppose that we are interested in learning the regression relationship between a scalar outcome variable Y and vari-
ables X and Z. We will call the latter, X and Z, covariates. They could both be vectors, but for simplicity we start with
X being scalar. We suppose that whereas the Z variables are measured exactly, X is measured with error, with the true
value of X being unobserved. We denote the error-prone observed variable by X" (although sometimes it is denoted by W
in the statistical literature). To understand and measure the impact of the mismeasurement of X, we have to know the
relationship of the observed X~ to the unobserved X. This relationship is specified in a statistical model.

2.1 | Measurement error in covariates (continuous variables)

There are several sources of measurement error in continuous variables. One is instrument error, arising due to limita-
tions of the instruments used to measure the exposure. Another is error due to self-reporting. It is also common that the
exposure of interest is an underlying “usual level,” or average level over a defined period, of a quantity that fluctuates
almost continually over time. This applies particularly when the exposure is a biological measurement (such as weight
or blood pressure). In this case the true exposure may never be observed and we discuss this setting further in Section 4.2
where issues of study design, including reproducibility, are considered.

When X and X~ are continuous, their relationship is defined by a measurement error model. The simplest case is known
as the classical measurement error model'3 and is defined by:

X*=X+U, (1)

where U is a random variable with mean 0, and is independent of X. Classical errors have been assumed quite frequently,
although not universally, in laboratory and objective clinical measurements, for example, when modeling the relationship
between serum cholesterol'* or blood pressure and heart disease.!> An extension of this model that is more suitable for
some measurements, particularly self-reports, is the linear measurement error model,'* in which

X*=aq+axX+U. 2)
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This model describes a situation where the observed measurement includes both random error (U, with mean 0 and
independent of X) and systematic error, allowing the latter to depend on the true value X. Classical error is included as
a special case of this more general model (2), occurring when ay = 0 and ax = 1. In model (2), a¢ can be said to quantify
location bias—bias independent of the value of X, and ax quantifies the scale bias—bias that depends proportionally on
the value of X. The linear measurement error model has been used widely to describe the error in self-reports of dietary
intake (eg, Freedman et al'®), and in some versions the parameter a, has been specified as a random variable that varies
across individuals.!” Further extensions of the linear measurement error model allow X" to depend also on other variables
Z that may, or may not, be the same as the exactly measured variables Z in the outcome model.’® Another extension is to
allow the variance of U to depend on X (eg, Spiegelman et al'®).

Of course, the relationship between X “and X may, in practice, be of other forms than the linear model (2). There is
a large literature on such models (see, for example, Chen et al?), but relatively few applications of them in epidemiol-
ogy, where the most common approach has been to use transformation of the variables to recover, at least approximately,
the linearity of the relationship. The most common transformation employed is the logarithmic?! but power transfor-
mations have also been used.?? Assuming the classical error on the log scale, that is, logX* = logX + U, corresponds to
multiplicative error.

In models (1) and (2), the measurement X" is viewed as arising from the true value X together with a random error
term U that is independent of X. Such a model is suitable for many measurements that are employed in epidemiology.
However, in some circumstances, it is instead appropriate to view the true value X as arising from the measured value X~
together with an error U that is independent of X". This occurs, for example, when all the individuals in specific subgroups
are assigned the average value of their subgroup. In that case the error model should be written:

X=X"+U, (3)

where U has mean 0 and is independent of X". This is known as the Berkson error model.? It occurs frequently in occu-
pational epidemiology (eg, Oraby et al**) and in air pollution studies (eg, Goldman et al?®). For example, in a study of
second-hand smoke exposure, the exposure of workers to second-hand smoke in different factories may be assigned to be
the average level of airborne nicotine obtained from monitoring devices placed in each factory. In air pollution studies,
the exposure to certain particles of individuals living in different geographical areas may be assigned as the value from a
fixed local air pollution monitor. Berkson error also arises when scores are assigned to individuals on the basis of a pre-
diction or calibration equation, which is often not appreciated (eg, Tooze et al*®). Suppose that the observed exposure is
obtained as the expected outcome (fitted value) from a prediction model for the true exposure based on predictor vari-
ables C, X =6, + GEC + €, giving X* = Bo + e“cr C. In the event that the prediction model parameters are based on a large
sample, it follows approximately that X = X" + ¢, that is, the scores from the prediction model are subject to Berkson error.
Tooze et al?® give an example where the exposure of interest is basal energy expenditure, and the observed value is an
estimate obtained using a previously-derived prediction equation based on an individual's age, sex, height, and weight.
Variables obtained on the basis of prediction or calibration equations should therefore be handled accordingly in analyses
that incorporate them. See Section 3 for a discussion in the context of outcome variables measured with error.

The Berkson error model as defined in (3) is additive. However, as for the classical error model, a multiplicative form of
the Berkson error model may also be considered, meaning that the additive form holds for the log-transformed variables:
logX = logX" + U.

When X"and U are normally distributed, then the Berkson error model can be re-expressed as a special case of the
linear measurement error model (2), with ax = var(X")/(var(X") + var(U)) and ag = E(X")(1 — ax). In the same vein, under
these same circumstances, the linear measurement error model (2) can be re-expressed as a linear regression of X on X".

An important issue is whether or not the measurement error U contains any extra information about the outcome Y.
When the error contains no extra information about Y, we call the error nondifferential. We express this concept formally,
by saying the error is nondifferential with respect to outcome Y if the distribution of Y conditional on X, X", and Z (denoted
p(Y|X, X", Z))is equal to p(Y | X, Z).°®30) Otherwise the error is differential with respect to Y. Nondifferential error with
respect to Y can also be expressed in terms of the conditional distribution of X", p(X'1X, Y, Z) = p(X" | X, Z), and in
terms of conditional independence between X~ and Y given X and Z, that is, p(X", Y1 X, Z) = p(X" | X, Z)p(Y | X, Z). Error
is often nondifferential when variables are measured at baseline in a prospective cohort study, since the measurement
precedes the outcome often by a lengthy period (eg, Willett?”(®®), Differential error can occur in case-control studies,
when measurements may take place after the outcome has occurred. One form of differential error is the well-known
problem of recall bias that can occur in case-control studies (eg, Willett?”®7). Here, the errors in responses to questions,
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such as “how many cigarettes did you smoke per week?,” are dependent on whether the person is a case or a control (the
outcome), for example, a person who has or has not been diagnosed with cancer. In general, in analysis, the effects of
nondifferential error are easier to correct than the effects of differential error.

Error can also be nondifferential with respect to both Y and Z, whereby X" is known to be conditionally independent
of (Y, Z) given X. This is a stronger form of nondifferentiality than the definition given in the previous paragraph. In
fact, this stronger form holds for models (1)-(3), if the random term U is independent of variables Z as well as being
independent of Y and X (models (1) and (2)) or X" (model (3)).

2.2 | Misclassification in covariates (categorical variables)

As in Section 2.1, we are interested in the regression relationship between Y and covariates (X, Z), when the available
data are Y, X", and Z. Now, however, we take up the case where X and X" are both categorical variables. For instance,
in an observational, questionnaire-based study, some participants may, wittingly or unwittingly, check the wrong box on
a yes/no item. As mentioned earlier, when X is categorical the discrepancy between X and X" is typically referred to as
misclassification rather than measurement error.

The simplest case to start with is that in which X and X" are both binary, and the misclassification is nondifferen-
tial. For current purposes we assume the stronger form of nondifferentiality, which is tantamount to assuming that the
“noise” transforming the latent X into the observable X" is ignorant of the values of Y and Z. Then, mimicking the linear
measurement error model of Equation (2), we can view the regression relationship

E(X*|X,Z,Y)=(X0+QXX, (4)

as describing the extent of the misclassification. This serves to remind that misclassification is closely related to measure-
ment error. However, unlike the situation with measurement error, (g, @) are necessarily constrained to ensure that (4)
remains between zero and one. In fact, it is more common and intuitive to see nondifferential misclassification expressed
in terms of the sensitivity, Sn =Pr(X" = 11X =1,Z,Y) =Pr(X" = 11 X = 1) = ay + ax, and specificity, Sp = Pr(X" =0/ X =0,
Z,Y)=Pr(X" = 01X = 0) = 1 —ay. See Gustafson3¢=3>1 or Buonaccorsi’®¢23 for a more detailed description of this
framework.

Following from this, when choosing a model to represent differential misclassification, adding terms involving Y
and/or Z to the right-hand side of (4) is unappealing, since a complicated constrained parameter space ensues. Rather,
using an appropriate link function is recommended, for example the logit link function.

In principle, the idea of Berkson error also carries over to the misclassification setting. That is, there could be situations
where the conditional distribution of X given X" is the fundamental descriptor of the misclassification. This is seen less
often in practical applications, but could arise in an occupational hygiene context, where group-based exposure assessment
is used (see, for example, Tielemans et al?®). For instance, all workers in a group, based on a common work location, are
assigned the same exposure status, either X* = 0 for unexposed or X" = 1 for exposed; but misclassification arises, because
within that group some workers' true exposure X will differ from the assigned value X". Berkson misclassification also
occurs with pooled samples in the diagnostic setting (see, for example, Peters et al?®).

Regardless of the type of misclassification that can reasonably be assumed, when X and X~ are both binary, the dis-
tribution of X given X" is usually referred to in terms of predictive values (or reclassification probabilities), namely the
positive predictive value, PPV = Pr(X = 11 X" = 1) and the negative predictive value NPV = Pr(X = 0| X" = 0). In the typ-
ical non-Berkson situation, Sn and Sp are taken as characterizing the misclassification, with PPV and NPV then being
determined by Sn, Sp, and the prevalence of X, Pr(X = 1). In the atypical Berkson situation, PPV and NPV would char-
acterize the misclassification, with Sn and Sp then being determined by PPV, NPV, and the prevalence of X*, Pr(X" = 1).
See Buonaccorsi’®¢2>3 for more details.

An interesting form of misclassification arises when the binary X~ is created by thresholding a continuous variable
measured with error, in which case X would correspond to thresholding the continuous variable measured without error.
Thatis, say X =I{S > c}and X" = I{S" > ¢}, where S” is a nondifferential (with respect to Y and Z) error-prone measurement
of a continuous variable S. In a somewhat counterintuitive finding, Flegal et al*® demonstrated that even if the contin-
uous measurement S” has nondifferential error, the binary measure X" may have differential misclassification (see also
Wacholder et al*!). That is, conditional independence of S“and (Y, Z) given S does not imply conditional independence
of X" and (Y, Z) given X.
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Intermediate between a binary X and a continuous X is the case of a categorical X with more than two categories.
An obvious example in epidemiology is where X represents smoking status, with three options: never, former, or cur-
rent smoker. In this situation, sensitivity and specificity are subsumed by a matrix of classification probabilities, that is,
Dij = Pr(X* = jIX =i),fori,j=1, ..., k, where k is the number of categories. Work addressing this case includes that of
Brenner?? and Wang and Gustafson.33

While it has not commonly arisen, one need not limit misclassification to “square” situations, in which X and X" share
a common number (and labeling and interpretation) of categories. For example, 2 by 3 misclassification could arise if
exposure X is truly binary (“exposed” or “unexposed”), but the exposure assessment by an expert (or consensus of experts)
classifies each subject as “likely unexposed,” “perhaps exposed” and “likely exposed.” A 2 x 3 matrix of classification
probabilities would then describe the extent of misclassification. Wang et al** considered this setting.

2.3 | Measurement error and misclassification in an outcome variable

In previous sections, we have discussed error that occurs in measuring covariates X. However, it is also possible that the
outcome Y is measured with error, through the error-prone observation Y". As we will see in Section 3, the effects of
measurement error in an outcome variable are different from those in a covariate. The effects of measurement error in an
outcome variable have tended to be under-studied in the past relative to error in covariates, but there is now a growing
recognition of their potential impact. As we shall see in Section 3.3, particularly important are the effects of differential
error in Y, but here the definition of differential error changes. Differential error in Y occurs when Y" is dependent on X
conditional on Y (or on Y and Z), that is, p(Y'| Y, X)#p(Y' I Y) or p(Y'| Y, X, Z) #p(Y'| Y, Z).

Applications where a binary or categorical outcome variable is subject to misclassification have also been discussed
in the literature (eg, McInturff et al,3® Lyles et al*®). This is somewhat more nuanced than the corresponding situation for
measurement error in a continuous outcome variable, as we discuss in Section 3.3.

3 | EFFECTS OF MEASUREMENT ERROR AND MISCLASSIFICATION ON
STUDY RESULTS

In this section, we focus on the impact of measurement error in or misclassification of a variable on the results of a study.
We consider studies where the main analysis is based upon a model relating an outcome Y to a covariate X via a regression
model. We deal first with error in a continuous X, then with misclassification in a categorical X, and finally with error
in Y. In the following section on the effects of error in continuous covariates, we build up from the simplest case of a
single covariate, measured with error, to the case with additional exactly measured covariates, and finally to the case of
multiple error-prone covariates. The same is done in Section 3.2, which refers to misclassified covariates. It should come
as no surprise that the effects of error are different for the different types of error that occur, so that this section relies
on information we have already presented in Section 2. While it is a common misconception that measurement error in
covariates merely leads to attenuation of effect estimates (and is thus considered less of a concern by some), we shall see
that this is true only in certain special cases.

3.1 | Effects of measurement error in a continuous covariate

3.1.1 | Single covariate regression

Suppose that our analysis of the relationship between a continuous outcome Y and covariate X is based on a linear
regression model

E(Y1X) = Bo + PxX. (5)
However, because of measurement problems we use X~ instead of X and therefore explore the linear regression

E(Y1X™) = fy + Py X" (6)
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Classical error in the explanatory variable Berkson error in the explanatory variable

X (black) or X* (grey) X (black) or X* (grey)

FIGURE 1 Simulated data on 20 individuals showing the effects of classical error and Berkson error in the continuous covariate X on
the fitted regression line. For both plots Y was generated from a normal distribution with mean f, + fxX (using o = 0, fx = 1) and variance
1. Classical error plot: X was generated from a normal distribution with mean 0 and variance 1. X* was generated using X~ = X + U. The
difference in the slopes in this graph is due to attenuation from the measurement error in X". Berkson error plot: X" was generated from a
normal distribution with mean 0 and variance 1 and X was generated from the normal distribution implied by the Berkson error model

X = X"+ U. For both error types var(U) = 3. The small difference in the slopes in this graph is due entirely to sampling error

In assessing the impact of the measurement error on the regression results we will be interested mainly in:

1. whether and how g is different from fx, and

2. whether the precision with which we estimate g, is different from the precision with which we estimate fx, and

3. whether the usual statistical test of the hypothesis that f; = 0 is or is not a valid test (ie, preserves the nominal
significance level) of the hypothesis that gx = 0.

When measurement error is classical and nondifferential (model (1)), then |g;| <| fx |, with equality occurring only
when fx = 0. The measurement error in X~ attenuates the estimated coefficient, and any relationship with Y appears
cov(Y, X*) cov(Y, X+U) _  cov(Y, X) _ var(X) cov(Y, X) — /lﬂX where 4 =

. e _
less strong. More precisely we can write: f; = var(x*)  varX+U)  var(O)+var(U)  var()+var(U)  var(X)
var(X)

D) lies between 0 and 1 (0 < A<1) and is called the attenuation factor,"®*¥ or by some the regression dilution
factor.?” See the graph on the left-hand side in Figure 1. Clearly, the larger is the measurement error (var(U)), the smaller
is the attenuation factor, and the greater is the attenuation. Besides attenuating the estimated coefficient relating Y to X,
classical measurement error also makes the estimate less precise relative to its expected value. In other words, the ratio
of the expected value of the estimated coefficient to its standard error (SE) is smaller than under circumstances where X
is measured without error, that is, E(ﬁ;) / SE(ﬁ;)< E(ﬁx) /SE(ﬁX), and therefore the statistical power to detect whether it
is different from zero is lower. Approximately, the effective sample size is reduced by the squared correlation coefficient
between X" and X, pf(x*’ which for this model happens to be equal to the attenuation factor 4.1%3 When measurement
error is substantial (eg, A <0.5), its effects on the results of research studies can be profound, with key relationships being
much more difficult to detect.

While measurement error in this single covariate setting results in bias and loss of power, any test of the null hypothesis
that 5 = 0is a valid test of the hypothesis that fx = 0, and this is because the relationship g = Afx means that g equals
0 if and only if fx equals 0.

When the error in X conforms to the linear measurement error model (2), the relationship By = APx still holds'? but
A need no longer lie between 0 and 1, since now

1= i axvar(X) . %)
ayvar(X) + var(U)
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This means that under the linear measurement error model the effect of the measurement error is no longer nec-
essarily an attenuation. Nevertheless, in nearly all applications ay is positive, so that negative values of A are virtually
unknown, and in many applications, var(U) is sufficiently large to render 4 less than 1, even when ay is less than 1.3
Regardless of the value of ay, statistical power to detect the relationship between X and Y is reduced and the effective
sample size is reduced by a factor approximately equal to pi( - As with classical measurement error, the test of the null
hypothesis that f;; = 0is a valid test of the hypothesis that fx = 0. Note that the expression for 4 in (7) reverts to the form
for classical error when ax = 1.

When the error in X* has the form of the classical (1) or linear measurement error model (2), but the error is differen-
tial, then the above results no longer hold, and an additional contribution to the bias occurs in the estimated coefficient
due to the covariance of outcome Y with error U. In particular, the relationship f5; = 4fx no longer holds, so that statistical
tests of the null hypothesis that g = 0 generally are not valid tests of the hypothesis that fx = 0.

When the error in X" is Berkson (model (3)) and nondifferential, the effects on estimation are very different from those
described above. In fact, there is no bias, that is g = Px!!! See the graph on the right-hand side in Figure 1. However, as
with the classical and linear error models, statistical power is reduced, and the effective sample size is again reduced by
the factor p2 ..

The results in this section relating to the properties of f;; are based on assuming the linear model for Y given X in (5)
and a linear relation between X and X". The linear relation between X and X" is likely to be appropriate for many practi-
cal purposes including when X and X" are jointly normal. If the relation between X and X~ is nonlinear, then the linear
model for Y given X no longer implies a linear model for Y given X" or vice-versa. However, transformations of X" (and
X) can often lead to approximate linearity and the above results could then be taken as good working approximations. If
the linear model for Y given X is misspecified then the above expressions for the attenuation factor 4 hold asymptotically.
If investigators are particularly concerned that these linearity assumptions do not hold, they may try to find a transfor-
mation of the X scale on which the assumptions are more tenable, or pursue more advanced methods to accommodate
nonlinearity.

3.1.2 | Regression with a single error-prone covariate and other exactly measured
covariates

Most analytic epidemiological studies involve regression models with several covariates. Suppose we wish to relate out-
come Y not only to X but also simultaneously to one or more exactly measured covariates, for example confounders, Z,
so that

E(Y|X,Z) = po + PxX + PzZ, ®)

where Z may be scalar or vector. As before, because of measurement problems we use X * instead of X, and therefore
explore the linear regression

E(Y|X*,Z) =y + P X* + p;Z. 9)

Results concerning g are similar to those in Section 3.1.1. When the error in X* conforms to a linear measurement

ayzvar(X|Z)
a)zﬂzvar(X |Z)+var(U)’
a linear measurement error model for X" that includes the variables Z as other covariates. This expression is a simple
extension of the formula given for classical measurement error by Carroll et al.%¢4-319 Because By = APx, any test of the
null hypothesis that g = 0 is a valid test of the hypothesis that fx = 0. Also similar to previous results, statistical power
to detect the relationship between X and Y is reduced, but now the effective sample size is reduced by a factor equal to
pf(X* 2 where pxx-|z is the partial correlation of X * with X conditional on Z.

Note also that in general the coefficients for Z, f, are not equal to iz, so that estimates of these coefficients from
the model with X~ substituted for X will also be biased. This bias will occur in the case of each Z-variable, unless the
Z-variable is independent of X conditional on the other Z-variables or fix = 0.6sec:3.3) Moreover, due to the form of the
bias, any test of the null hypothesis that 7 = 0 is an invalid test of the hypothesis that 7 = 0. These results highlight the
impact of measurement error in covariates that are not the main exposure of interest on the results from an analysis, even

when the main exposure is measured without error.

error model, the relationship fy = Afx still holds but now 1 = 6 where ax |z is the coefficient of X in



KEOGH ET AL. Statistics W] LEY—I—9

With Berkson error, special conditions are required for f, to equal fx and for g to equal fz, namely that the error
involved in X", U (see model (3)), is independent both of Z and of the residual error in regression model (8). Independence
of the residual error is the equivalent of the nondifferential error assumption with respect to the outcome Y (p(X'1X, Y,
Z) = p(X'1X, Z)). However, independence of U from Z is not guaranteed, and may even be uncommon. Thus, contrary
to general perception, Berkson error in a covariate can indeed cause bias in the conventional estimate of the regression
coefficients in multiple regression problems, even when the error is nondifferential. The bias caused by Berkson error that
is nondifferential but correlated with Z is a multiplicative one, like the bias caused by nondifferential classical or linear
measurement error. Thus the usual test of the null hypothesis remains valid. Except in some special cases, correlation of
the Berkson error with Z also causes bias in the usual estimate of i, but in this case the bias is additive, so the usual
test of the null hypothesis is invalid. The special cases where there is no bias occur when X is independent of a given Z
conditional on the other Zs, or when Sy is zero.

3.1.3 | Regression with multiple error-prone covariates

Often, particularly in nutritional epidemiology, we wish to relate the outcome Y to two or more variables that are each
measured with error. For example, in the case of two such variables, the model will be

E(Y1X1,X3) = fo + pxiXa + Px2Xo. (10)

Because of measurement problems we observe X instead of X;, and X instead of X,, and therefore fit the linear
regression model

E(Y|X],X5) = By + B Xy + By, X5 (11)

Results concerning the vectors of coefficients fx = (fx1, fx2)T and By = (B ,B)*Q)T are different from those in the
earlier sections. When the errors in the X~ variables conform to the classical measurement error model, their relationship
may still be written in the form g = Afx but now A = cov(X + U)~cov(X), where cov( ) is a 2-by-2 variance-covariance
matrix and X and U are vectors (X1, X,)T and (U, U,)7, the latter denoting the errors in X} and X7, respectively. Writing
out this relationship fully we obtain,

Bi1 = A1bx1 + A2fxz (12)

By, = A1 Bx1 + A fxas

where Ay (i, j = 1, 2) denotes the (i, j)th element of the 2-by-2 matrix A. Thus, the simple proportional relationship
between 5, and fx; (or between Sy, and fx,) seen in earlier sections no longer holds. The diagonal terms of the A matrix,
Aq1 and Ay, are still likely to lie between 0 and 1 in most applications, so that, for example, gy, will usually contain an
attenuated contribution from the true coefficient of X; (A118x1), but g5, will also be affected by “residual confounding”
from the mismeasured X, (A12fx2). Thus, the estimated coefficients in model (11) may be larger or smaller than the true
target values in a rather unpredictable manner. Furthermore, any test of the null hypothesis that f3, = 0 in general will
no longer be a valid test of the hypothesis that fx; = 0, and similarly for the test of fx, = 0. As we will see in Section 6,
in these circumstances, valid inference for fx; (say) requires knowledge about or estimation of the parameters of the
measurement error models for both X and X.

When the errors in the X" variables conform to the linear measurement error model, the formulas are similar but
slightly more complex, and the concerns over biased estimation and hypothesis testing are identical to those described
above for multiple covariates having classical error.

If both covariates are subject to Berkson error then, as in Section 3.1.2, the estimated coefficients are unbiased only
in special circumstances. Assuming the errors are nondifferential with respect to outcome Y, one also requires that the
Berkson error in X is independent of X7, and the Berkson error of X} is independent of X}. When bias occurs, it is
accompanied by the nonvalidity of the conventional null hypothesis tests that the regression coefficients are zero, as
explained in Section 3.1.2.
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3.1.4 | Common nonlinear regression models

While the results described in Sections 3.1.1-3.1.3 are derived for linear regression models, they serve as good approxima-
tions in many circumstances for other regression models that specify a linear predictor function, for example, generalized
linear models:

hEYX,2)) = fo + BxX + pzZ. (13)

The approximation is usually good if the measurement error is small or the magnitude of fx remains small to mod-
erate, although the definition of “small to moderate” depends on the form of the model. Details for the commonly used
logistic regression model, among others, are given by Carroll et al.%(¢c4%)

For the Cox proportional hazards model, the relation between g5 and fx (now log hazard ratios) is complicated by
the longitudinal nature of the analysis, and by the changing set of individuals remaining at risk.** However, sometimes in
epidemiological problems, event rates are very low and drop-outs are entirely random, so that the covariate distribution
of individuals at risk remains stable throughout the follow-up. In such circumstances the results for linear regression
models above would provide good approximations.*! Carroll et al® discuss the impact of measurement error in nonlinear
regression models and provide expressions for bias based on higher-order approximations.

3.2 | Effects of misclassification in a binary covariate
3.2.1 | Single covariate regression

Having considered continuous covariates measured with error, we now turn to the case of binary or categorical covariates
that are misclassified. We start with a continuous outcome Y and a single binary covariate X that is misclassified as
binary X", used in models described by Equations (5) and (6). In the situation of a binary covariate, the interpretation
of the coefficient fix is as a difference in the mean outcome between those with X = 1 and those with X = 0. Assuming
nondifferential misclassification, as described by sensitivity Sn and specificity Sp, fy; is attenuated. The attenuation factor
A = f5/Px is determined by Sn, Sp, and Pr(X = 1). For examples, see Figure 2. Given that the positive predictive value
(PPV) and negative predictive value (NPV) for X" as an error-prone measurement of X are themselves determined by Sn,
Sp, and Pr(X = 1), Gustafson®(®¢¢3D argues that the attenuation factor is most intuitively expressed as

4 = NPV + PPV — 1. (14)

This gives a direct expression that shows how a more error prone measurement of X yields more attenuation in
estimating the coefficient for X.

Aside from the particular form of the attenuation factor, the other messages from Section 3.1.1 remain unchanged.
Testing the null hypothesis that f; = 0is a valid test of the hypothesis that fx = 0. However, the test based on (Y, X *Ydata
has lower power than the ideal test based on (Y, X) data, since the association between Y and X" is necessarily weaker
than the association between Y and X.3842

Returning to the magnitude of attenuation, Equation (14) also permits identification of problematic situations. For
example, say Pr(X = 1) is close to zero (a “rare exposure”). Then, since PPV = {1 + (Pr(X = 0)/Pr(X = 1))((1 — Sp)/Sn)} %,
even a relatively high specificity can produce a very low PPV. For instance, if Pr(X = 1) = 0.01, a specificity of 0.9
nevertheless leads to a PPV less than 0.1. In turn this produces massive attenuation.5(se¢-3-D

3.2.2 | Regression with a single misclassified covariate and other exactly measured
covariates

In Section 3.1.2, we considered using, by necessity, the linear regression of Y on X* and Z when really wanting to regress
Y on X and Z. When Z is scalar (of any type), X is binary and the misclassification is nondifferential (with respect to Y
and Z), an expression for the attenuation factor A = f5/fx is given in Section 3.2 of Gustafson's book.? The result does
not depend on assuming that the linear model for Y given (X, Z) is correctly specified. Rather, the attenuation factor is
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FIGURE 2 Effects of nondifferential misclassification in binary X
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defined as the ratio of large-sample limits for the estimated regression coefficients. The expression for the attenuation
factor is unwieldy and not reproduced here. Some of its properties, however, are intuitively helpful. In particular, when
X and Z are uncorrelated, the attenuation reduces to Equation (14). Also, with all other aspects of the problem fixed, the
attenuation factor decreases as the magnitude of the correlation between X and Z increases. This permits an expansion
of the list of problematic situations. We have already mentioned as problematic modest misclassification (and imperfect
specificity particularly) of a rare exposure, but if that rare exposure X is strongly associated with a precisely measured
covariate Z, then even stronger attenuation occurs.

Again, the main message about hypothesis testing is the same as for continuous X (Section 3.1.2). Assuming nondif-
ferential misclassification, Y and X~ will be associated given Z if and only if Y and X are associated given Z. Hence a test
for p5; = 0 using available data will be valid as a test for fx = 0, but will have less power than could be achieved were (Y,
X, Z) data available.

Also in line with the case of continuous X, the misclassification of X implies that the coefficients of Z estimated from
regressing Y on X" and Z are biased for the coefficients of Z in the Y given X and Z model. When Z is scalar, an explicit
expression for this bias is given in Gustafson's book.5(¢¢-3-2)

3.2.3 | Regression with multiple misclassified covariates

Situations where two or more categorical covariates are subject to misclassification have not received very much attention,
either theoretically or in practice. The added complexity discussed for the continuous case in Section 3.1.3 applies here
as well. Even if the model of Equation (10) holds for X; and X, that are both binary, and even if the misclassification
mechanism is simple, unwieldy forms for Equation (12) result. It is worth considering what “simple” or “nicely behaved”
can mean in the face of two binary covariates subject to misclassification. We could assume, for example that as a pair
X *,X;) have nondifferential misclassification, and we could further assume “independent errors,” that is, conditional
independence of X;" and X} given (X1, X;). Under these assumptions, and for given sensitivity and specificity of each
error-prone measurement, it is easy to determine E(Y|X *,X;‘) from E(Y1 X1, X,). However, we do not obtain simple and
interpretable expressions. In particular, and in line with Section 3.1.3, the X} coefficient will be a sum of a term involving
Px1 and a term involving fx,. A simple attenuation structure does not emerge.

3.2.4 | Other common situations

What we know about the impact of a misclassified covariate in a linear model for a continuous outcome carries over
approximately, but not exactly, to generalized linear models for other types of outcomes. Closed-form expressions are
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elusive here. For example, Gustafson®°¢34 gives a numerical algorithm to determine the large-sample limits of logistic
regression of a binary Y on X" and Z, when the logistic regression of Y on X and Z is of interest. For fixed f, and f, By
is seen to vary almost linearly with fx, and this relationship varies only slightly with g, and fz. As with so many other
statistical concepts, what holds exactly in the linear model holds approximately in the generalized linear model.

However, such intuitions about attenuation do not extend to misclassification of a categorical covariate having more
than two categories. Recall that a matrix of misclassification probabilities governs such misclassification, with entries
pij = Pr(X” =jl X = i). Even given nondifferential misclassification, it is straightforward to construct a plausible misclassi-
fication matrix for which E(Y|X") has a different pattern than E(Y| X), in which attenuation does not occur. For example,
suppose X is ordinal. Then, in comparing levels X =a and X = a+1, E(YIX =a+1)-E(YIX" = a) can be larger in
magnitude than E(Y|X = a+1) — E(Y| X = a). Some work that investigates the polychotomous case includes Dosemeci
et al** and Weinburg et al,** but our emphasis here is really on the irregularity of the impact of misclassification.

3.3 | Effects of measurement error in an outcome variable

In Sections 3.1 and 3.2, we have focused on the effects of error in covariates. We consider now the effects of measurement
error in an outcome variable, Y. Recall that the error prone version of Y is denoted Y". We assume that covariates are
measured without error and, for simplicity, we focus on a single covariate X, though the results extend easily to multiple
covariates.

3.3.1 | Continuous outcomes
Suppose that our analysis is based on the linear regression model
E(Y|X) = fo + pxX. 15)
Because of measurement error in Y, we instead use the linear regression model
E(Y*|X) = py + peX. (16)

Asin the case of measurement error in a covariate, our interest is in whether and how g, is different from fx, whether
the precision with which we estimate g, is different from the precision with which we estimate fx, and whether the usual
statistical test of the hypothesis that g§ = 0 is a valid test of the hypothesis that fix = 0.

Under the classical error model for Y”, thatis Y = Y + U (as in Equation (1)), Y~ is an unbiased measure of Y. Hence
the expectation of Y” is equal to the expectation of Y; E(Y") = E(Y). The same holds if we condition on any covariates X;
E(Y'I X)=E(Y | X). Therefore, a regression of Y on X yields unbiased estimates of f, and fx, in other words By = Poand
By = Px-See the graph on the left-hand side of Figure 3. This contrasts with the attenuation effect of classical measurement
error in a single covariate X. It follows also that a test of the hypothesis that g = 0 is a valid test of the hypothesis that
Px = 0. Although the regression coefficients are not affected by replacing Y by the error prone measure Y when the
error is classical, the fitted line from the regression of Y* on X will have greater uncertainty than that from a regression
of Y on X, and the precision with which p; is estimated using Y" is lower than that with which fx is estimated using Y.
Consequently, the power to detect an association between X and the outcome is lower when using Y* than when using Y.
One way of understanding this is to note that var(Y"| X) = var(Y| X) + var(U). The additional variability in Y* compared
with Y is absorbed into the residual variance in the regression of Y" on X, and the variance of the estimator ﬁ; is a function
of the residual variance.

Suppose now, instead, that the error in Y" takes the linear measurement error form

Y'=ay+ayY+U, a7
where U is a random variable with mean 0, constant variance, and independent of Y, as in Equation (2). Under this model

we have E(Y") = ag + ayE(Y). It follows, from Equation (15), that E(Y"| X) = (e + foay) + ay fxX. Measurement error of
this form therefore results in biased estimates of the association between X and the outcome.
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FIGURE 3 Simulated data on 20 individuals showing the effects of classical error and Berkson error in continuous Y on the fitted
regression line. For both plots X was generated from a normal distribution with mean 0, variance 1 and the errors U were generated from a
normal distribution with mean 0 and variance 3. Classical error plot: Y was generated with mean X and variance 1. Y* was generated using
Y" =Y + U. The difference in slopes is due entirely to sampling error. Berkson error plot: Y* was generated with mean X and variance 1. The
difference in slopes is due to attenuation from the measurement error in Y. Y given X was generated from the normal distribution implied by
the model for Y" and the Berkson error model Y = Y* + U

In the measurement error models for Y* considered above, the error is nondifferential with respect to X. One example
of when differential measurement error in an outcome could arise is in a randomized study of two treatments (X), in which
the nature of the treatments results in differential reporting of the outcome in the two treatment groups. Differential error
inY” may take the simple classical form, as in Equation (1), but with different error variances, var(U), in the two treat-
ment groups. This does not result in bias in the estimate of ;. However, it does result in heteroscedasticity in the residual
variance. More usually, differential measurement error in an outcome could take the form of different degrees of system-
atic error: Y = agx + ayx Y + U for two groups X = 0 and 1. The effect of this is that an estimate of Py is a biased estimate
of fx. The bias may be either towards or away from the null value 0, depending on the form of the differential error.*>

Outcome variables may also be subject to Berkson error, though this is perhaps less common than Berkson error in
covariates. We explained in Section 2.1 how Berkson error arises in variables that are derived as the result of a prediction
or calibration equation. Hence Berkson error in an outcome could arise if, instead of observing Y, we observe Y" which
has been obtained as the fitted value from a prediction model for the outcome Y. The Berkson error model (Equation (3))
isY =Y" 4+ U, where U has mean zero and is independent of Y". Here we focus on nondifferential Berkson error, meaning
that Y* and X are independent conditional on Y. To understand the effect of nondifferential Berkson error in an outcome
variable, recall that under this error model, and when Y* and U are normally distributed, the measured outcome follows
a linear regression model E(Y'|Y) = &g + ayY. Using this result, we can see that the coefficient Py in Equation (16) can

.o _ covX,Y*) _ aycov(X,Y) . . . . . _ cov(X,Y) :

be expressed as: fy = . = v The true coefficient of interest from Equation (15) is fx = ) Also using
_ cov(Y,Y") . % _ cov(Y,Y™") _ var(Y") _ var(Y™") . . var(Y*)

the result that ay = o We have the relation g3 = p— Px = war ) Px = TS e—r— Px. Since the ratio D)

lies between 0 and 1, the effect of this type of error is to attenuate the estimated regression coefficient.*® See the graph on
the right-hand side in Figure 3.

Recalling that in a simple linear regression of Y on X, Berkson error in covariate X causes no bias in the estimated
regression coefficient, one sees that the effects of nondifferential classical error and Berkson error in an outcome variable
are the reverse of their effects in a covariate. As with differential classical error, differential Berkson error in an outcome
variable may cause over-estimation or under-estimation of fx.

3.3.2 | Binary outcomes

We have seen in Section 3.3.1 that nondifferential and unbiased measurement error (as in model (1)), yielding a sur-
rogate Y" for continuous Y, preserves linear model structure, that is, E(Y'| X) = E(Y | X), with the only impact of the
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measurement error being an increase in residual variance. However, it is quickly apparent that this same relationship
does not hold if Y is categorical, as we now show. Misclassification in a binary outcome (Section 2.2) can be expressed
in terms of the sensitivity Sn(X) = Pr(Y" = 1|Y = 1, X) and specificity Sp(X) = Pr(Y" = 0| Y = 0, X). The sensitivity and
specificity may be differential, that is, dependent on X, or nondifferential, in which case Sn(X) and SP(X) do not depend
on X. Noting that E(Y|1 X) = Pr(Y = 1/ X) and E(Y"| X) = Pr(Y" = 1| X), these probabilities are related using the sensitivity
and specificity as

Pr(Y* = 1|1X) = (1 - Sp(X)) + (Sn(X) + Sp(X) — 1) Pr(Y = 1|X), (18)

and are equal only when Sp(X) and Sn(X) equal 1.
The association between a binary outcome and covariate X is typically modeled using a logistic regression model, for
example

Pr(Y = 1|X)

PrY = 0X) = fo + PxX, (19)

where f is the log odds ratio of interest. Using the measured outcome, we would instead fit the model

Pr(Y* = 1|X)

og Pr(Y" = 0[X) = fy + pX. (20)

It can be shown that, provided the misclassification in Y is nondifferential with respect to X, meaning that Sn(X) and
Sp(X) do not depend on X, the impact of the misclassification is that the log odds ratio f; is attenuated relative to fx.*’
However, if the misclassification is differential, that is if the sensitivity or specificity differ for different values of X, the
effect on the log odds ratio can be a bias either away from or towards the null value 0.7¢¢¢34 The effects of nondifferential
and differential misclassification are illustrated in Figure 4.

3.4 | Effects of measurement error on estimating the distribution of a variable

In some cases, there is interest in describing what we have termed an “outcome” variable not in relationship to other
variables, but to estimate the distribution of the variable in the population. Examples include estimating the distribution
of food intakes and physical activity levels for a population.*®*° As above, we consider the true outcome, Y, to be the
variable that we want to measure, and its measurement, Y~, to be an error-prone version.

Most commonly, we are interested in a continuous measure and assume a classical error model for Y". As noted in
Section 3.3.1, the classical error model leads to E(Y") = E(Y), and var(Y") = var(Y) + var(U); in other words, the mean of
the distribution of Y~ is unbiased, but the variance of Y* overestimates the variance of Y. Under a Berkson error model,
the mean of Y” is again unbiased for the mean of Y, but var(Y") = var(Y) — var(U) so the variance of Y" underestimates
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TABLE 1 Effects of measurement error according to type of error and target of the analysis

Nondifferential error

“WILEY——2

Differential error

Analysis Target Classical Linear Berkson Any
Single error-prone Regression coefficient ~Underestimated Biased in either Sometimes Biased in either
covariate regression direction unbiased?® direction
Test of null hypothesis  Valid Valid Sometimes valid? Invalid
Power Reduced Reduced Reduced® Not applicable®
Regression with Regression coefficients Biased in either Biased in either Sometimes Biased in either
multiple error-prone direction direction unbiased?® direction
covariates
Tests of null hypothesis Invalid Invalid Sometimes valid? Invalid
Power Not applicable® Not applicable® Reduced® Not applicable®
Regression with Regression coefficients Unbiased Biased in either Underestimated Biased in either
error-prone outcome direction direction
variable
Tests of null hypothesis Valid Valid Valid Invalid
Power Reduced Reduced Reduced Not applicable®
Distribution with an Mean Unbiased Biased in either Unbiased —
error-prone direction
continuous variable
Lower tail percentiles® Underestimated Biased in either Overestimated —
direction
Upper tail percentiles® Overestimated Biased in either Underestimated —

direction

2Unbiased and valid only when the Berkson error is independent of the other covariates in the model.
bThe power of a test is only meaningful when the test of the null hypothesis is valid.
“The percentiles affected depends on the distribution of Y.

the variance of Y.?* For other types of error model, such as the linear measurement error model, the variance of Y" may
vary in either direction from the variance of Y. Thus, the distribution of Y” is generally biased for important features of
the distribution of Y. In Part 2, Section 3, we discuss methods to estimate the distribution of Y when only an error prone
Y" can be observed.

3.5 | Summary of results in this section

This section has dealt with the effects of measurement error and misclassification on the results of commonly used sta-
tistical procedures. To provide an overview, we summarize the main results in a table (Table 1). In Section 6, we will
consider some analysis methods commonly used with continuous variables to mitigate these effects. However, because
these adjustments usually require data from ancillary studies that investigate the measurement error, we will first consider
such studies in Sections 4 and 5.

4 | ANCILLARY STUDIES FOR ASSESSING THE NATURE AND
MAGNITUDE OF MEASUREMENT ERROR

4.1 | General principles

To adjust estimates and hypothesis tests for the effects of measurement error, one needs information on the measurement

error model and its parameters. If at the time of designing the study, the measurement error model and its parameters
are fully known then one may use the information to form a correct analysis method. In epidemiology, however, there is
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often a severe lack of information about measurement errors and ancillary studies are sorely needed for ascertaining the
nature and magnitude of the measurement error.

Ancillary studies involve the use of additional measurements alongside the error-prone measurement X" to provide
information about the measurement error. In practice, the nature of ancillary studies varies according to the type of errors
of measurement expected and the availability of more accurate methods of measurement that may be used as reference
values. We will see this in Section 4.3, where we present a brief survey of reference instruments available for selected
exposures used in epidemiology. There is no universally accepted terminology for the different types of ancillary studies
that are used. Here we describe three types, which we refer to as validation studies, calibration studies, and replicates
studies.>®

4.2 | Classification of the types of ancillary study

In a validation study, a measurement of the true value of the variable, X, is obtained, as well as the main error-prone
measurement X, for some individuals. The measure of the true value X is often also referred to as the reference measure-
ment. A validation study is the cleanest type of ancillary study and in this case, the model relating X" to X can be inferred
directly from the data.

Suppose X" follows the linear measurement error model in (2). If the true value X cannot be ascertained, then a
measurement that is unbiased at the individual level (ie, that is known to conform to the classical measurement error
model (1)) may be used in its place. We call this a calibration study.>! The unbiased measurement, which we denote X,
is also often referred to as the reference measurement, and it comes with the extra requirement that its random errors are
independent of the errors of the main error-prone measurement X .

A calibration study, as described above, can provide the data for the method of measurement error adjustment known
as RC that we will present in Section 6. A single measure using the reference instrument is sufficient to enable use of
RC. However, to identify all the parameters of the measurement error models for X" and X™, the reference measurement
with classical error must be repeated within individuals so as to assess the magnitude of its random error. In particular,
this enables the correlation coefficient between the main error-prone measurement X~ and the true value X to be esti-
mated. A key assumption in this is that the errors in the repeated measurements obtained using the reference instrument
are independent. The repeated measures should be obtained at a sufficiently distant time to ensure such independence,
though not so distant that the true underlying value has changed for an individual.

When working with self-reported data, it sometimes occurs that X" comes from a short questionnaire that is inex-
pensive to collect and the desire is to validate it against another more intensive self-report procedure that is used as the
reference measurement. Unfortunately, this reference measurement may also be biased (although less so), and it is often
found that it has errors that are correlated with those using the short questionnaire. This can be considered a type of cali-
bration study, but one with an imperfect reference measurement. In this case, the calibration study will provide estimates
of the parameters of the measurement error or misclassification model that are somewhat biased.

A special case, commonly occurring in epidemiology, is where it is assumed that the main error-prone measurement
X" has classical measurement error. Then the parameters of the measurement error model may be estimated from repeated
applications of the main error-prone measurement method within individuals. No measurements of the true value of
the variable are required. We refer to an ancillary study of this type as a replicates study; it is also sometimes known as a
reproducibility study or a reliability study. Under the assumption that the errors in the repeated measurements of X~ are
independent, the data from a replicates study are sufficient to estimate the parameters of the classical measurement error
model. Carroll et al®¢¢17) describe how to use data from such a study to check whether the assumptions of the classical
model really hold. It is sometimes found that the classical model holds only after a transformation (eg, logarithmic) of
the variable.

Ancillary studies of the three types described above are best nested within the main study. For example, a subgroup
of participants in a cohort study may be asked to provide not only the main error-prone measurement of exposure
but also the additional measurement(s), these being the true measurement X (validation study), the reference mea-
surement (calibration study), or the repeated measure (replicates study). In this case, the study is called an internal
study. It may be usually desirable that the subgroup of participants are, as far as possible, a random sample (sim-
ple or stratified) of those in the main study. In settings where E(X1X", Z) is being estimated via a regression, then
sampling schemes stratified on variables in this regression could achieve better precision of the coefficients in the
calibration equation compared with simple random sampling. For example, in linear regression, oversampling the
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extremes and increasing the variance of X can be more efficient than simple random sampling in terms of decreasing
the variance of the estimated regression parameters; optimal sampling schemes for multivariable regression can also be
derived.>?

Ancillary studies that are conducted on a group of individuals not participating in the main study are called external
studies. External studies are less reliable than internal ones for determining the parameters of the measurement error
model, since the estimation involves an assumption of transportability between the group of participants in the ancillary
study and the group participating in the main study. Carroll et al®**225 describe the dangers of transporting a model
derived from an external study. However, in many circumstances, the only information available about the measurement
error comes from an external study, and careful use of such information (accompanied by sensitivity analyses) can add
greatly to the understanding of results (see Part 2, Section 6 of our article).

Estimation of the error variance in a Berkson model is often problematic, since in these applications reference mea-
surements are typically difficult to obtain. In some applications, the Berkson error comes from the use of an X" derived
from a prediction equation for X, and in that case the residual error variance estimated from the source data that yielded
the equation can serve as the Berkson error variance estimate. See, for example, Tooze et al.26

In Section 5 we will discuss the desirable size of a validation, calibration, or replicates study. For further reading on
these types of study see Kaaks et al.>

We will see each of the types of study described above in the following survey of exposure measurements in different
areas of epidemiology. Before proceeding to the survey, it should be noted that, when reporting the results of validation,
calibration or replicates studies, most investigators limit themselves to presenting correlations between the measurements
from their instrument and the reference instrument (sometimes adjusting for the within-person variation in the reference
measurement). However, they usually do not use the information from their study to determine the measurement error
model and its parameters. As a result the information required for adjusting estimates in the main study for measurement
error or misclassification is not reported or used, and the study is used simply to report that the study instrument has
been “validated”!® Investigators should be encouraged to use ancillary study data to better interpret the results of their
main study.

This section has implicitly focused on the situation in which error is nondifferential. However, similar principles apply
when there is differential measurement error. In that case, parameters of the measurements error model depend on the
outcome Y, and data in the ancillary study should be obtained in such a way that all relevant parameters can be estimated.
In particular, the ancillary study requires information on the outcome. This is discussed further in Part 2, Section 2 where
measurement error correction methods that address differential error are outlined.

4.3 | Reference instruments available for selected exposures used in epidemiology
43.1 | Nutrition

Of all the areas of epidemiology, nutritional epidemiology has probably paid the most attention to measurement errors
of exposure.>* Nearly all nutritional epidemiological studies rely on self-reported dietary intakes as their main mea-
sure of exposure. However, these are known to be subject to considerable error, especially if exposure is defined as the
usual (or average) intake over a long period, the measure that is thought to be of most relevance to the epidemiology
of chronic diseases. There is no known way of getting an exact value of this measure, so true validation studies do not
exist.

For a few dietary components (energy, protein, potassium, and sodium) unbiased measurements of short-term intake
exist—they are called recovery biomarkers—and can be used as the reference measurements in calibration studies.>3
For all other dietary components—foods (eg, vegetables, meat) and other nutrients (eg, fat, fiber)—the usual prac-
tice is to rely on a second more accurate self-report method as the reference measurement (calibration study with
an imperfect reference measurement). When the main measurement X is a food frequency questionnaire (FFQ)—a
relatively short questionnaire that asks the individual to report on average intake over the past several months (up
to 12 months)—24-hour recalls or multiple-day food records in which the participant reports on intakes over a short
period in the immediate past are used as the reference. This is less than ideal, since these more accurate methods
are nevertheless somewhat biased and also have errors that are correlated with the errors in the FFQ report. How-
ever, they are the best method currently available.>> Prentice and others, using data from a unique large feeding
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study,>® are currently engaged in expanding the list of dietary components for which unbiased measurements are
available.

Another type of reference instrument used is a (nonrecovery) biomarker that is related to the intake of the nutrient or
food consumed (eg, serum cholesterol for saturated fat intake). Such biomarkers are usually subject to a high degree of
metabolic regulation that varies across individuals and consequently do not provide an unbiased measure of intake, and
are not, by themselves, helpful in determining the measurement error model, although they have been used alongside
other methods, to gain understanding of measurement error.>”->8

The measurement error model for self-reported dietary intakes has been shown not to conform to the classical model,”
so replicates studies are not a true option. However, many investigators, in the absence of anything better, have adopted
the assumption that 24-hour recalls provide unbiased measurements and have based measurement error adjustment on
studies of repeated measurements from this instrument (eg, Beaton et al>®).

4.3.2 | Physical activity

As in nutritional epidemiology, in large studies physical activity has mostly been assessed by self-reports using question-
naires, of which there are many variants. A large number of smaller studies have been conducted to “validate” these
questionnaires (see the National Cancer Institute (NCI) website https://epi.grants.cancer.gov/paq/validation.html) and
a few studies have used a measurement error model framework to adjust estimated associations of physical activity with
health outcomes, for example Spiegelman et al,® Ferrari et al,> Nusser et al,®! Tooze et al,?® Neuhouser et al,%? Lim et al,%3
Matthews et al,%% and Shaw et al.®> The reference instruments that have been used generally fall into three main cate-
gories: doubly labeled water, accelerometers, and physical activity diaries. Doubly labeled water is a technique used to
obtain an unbiased measure of total energy expenditure (TEE) and it is useful for determining the measurement error
model for TEE measured by a questionnaire through a calibration study.®

Since many physical activity questionnaires and recalls are designed to measure physical activity level (PAL) which
is defined as the ratio of TEE to basal energy expenditure (BEE), then for determining a measurement error model for
PAL, a reference measure for BEE is also needed, and may be provided by direct or indirect calorimetry. BEE has also
been estimated by using a prediction equation; however, this measure of BEE exhibits Berkson error (Equation (3)). In
this case, it may be necessary to have a calorimetry measure of BEE on at least a subset of participants to form a suitable
reference measurement for PAL.26

Unbiased reference measures of other physical activity measurements that can be derived from questionnaires, such
as hours of moderate or vigorous activity, are currently lacking. Accelerometers do provide information on such measure-
ments and, although not completely unbiased, they may be used as the reference in a calibration study with an imperfect
reference measurement. Physical activity diaries are more accurate than questionnaires,? but still rely on self-report. They
may therefore be regarded in a similar manner to 24-hour recalls or multiple-day records of food intake, not ideal as refer-
ences but usable in circumstances where other references, such as accelerometers or doubly labeled water, are infeasible
or unsuitable (eg, the activity measure of interest is something that cannot be measured by either of them, such as the
amount of time spent in anaerobic exercise).

4.3.3 | Smoking

Since smoking is a causal factor in a range of chronic diseases, it is often collected as a potential confounding variable in
chronic disease epidemiology studies. The usual mode of collection is through self-report questionnaires. The most com-
mon method of “validation” of self-reported smoking status is biochemical. Three different metabolites may be measured:
thiocyanate in the blood, urine or saliva; cotinine in the saliva, blood, urine or hair; and exhaled carbon monoxide.’
Although these measurements are made on a continuous scale, they have been used mostly as binary indicators (smoker
or nonsmoker) using a predetermined cut-off point (that has varied among investigators). Thus, these studies report mis-
classification rates (sensitivity and specificity), rather than measurement error model parameters or correlations. When
calculating these rates, the investigators have usually assumed that the biochemical measurement yields the true smoking
status, and, thus, that the study is a validation study. Biochemical validation has been used most frequently in smoking ces-
sation trials, where it has become the standard method of assessing the outcome.® Its use in observational studies is less
widespread, but nevertheless many validation studies have been conducted in this setting. For a review of cotinine-based
validation studies, see Rebagliato.5’
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4.3.4 | Air pollution

Research studies into links between air pollution exposure and health outcomes have often taken the form of longitudi-
nal studies, where time series of air pollution levels in different geographical areas are compared with levels of a disease,
such as asthma, at the same location and time (with a possible lag effect). Exposures are often assessed using a mathemat-
ical model that is applied to serial measurements of the concentration of certain particles in the air at fixed locations and
to other information such as temperature, wind strength and direction, and topology, so as to provide an estimate of the
ambient pollution at a given time and location. Zeger et al* discuss the type of measurement error inherent in such esti-
mated exposures when used as measures of exposure at the individual level, and conclude that it is a mixture of Berkson
and classical errors (see Part 2, Section 5.1 of our article). The accepted gold-standard for measuring personal exposure is
through a personal monitoring device, which is assumed to provide unbiased measures of true exposure. For a review, see
Koehler and Peters.”° For example, exposure at the individual level was recorded in the PTEAM study on a personal mon-
itor for measuring inhalable (PM10) particles or fine (PM2.5) particles’!; this can then be used in a calibration study. In
the Augsburger Environmental Study repeated measures from a personal monitor measuring ultrafine particle concen-
trations were available from an external sample, giving an external replicates study.”? For the Augsburger Environmental
Study, methods for handling the mixture of classical and Berkson error were developed in Deffner et al”® and applied to
the data. A valuable resource for investigation of measurement error modeling methods are the data from the Nine City
Validation Study’* on personal daily exposure to PM2.5 particles compared to PM2.5 of ambient origin based on the near-
est EPA monitor and spatio-temporal smoothed exposure estimates. These data may be requested at the website https://
www.hsph.harvard.edu/pm2-5-validation-dataset/.

4.3.5 | Other exposures

There is, of course, no end of other exposures that are relevant to questions of public health and it can be assumed that
many of them cannot be measured without substantial error. In some cases, such as blood pressure measurement, a gold
standard measurement (intra-arterial blood pressure) exists and validation or calibration studies of more approximate
measurement procedures (eg, sphygmomanometer) can be conducted to determine the measurement error model. In
other cases, it is thought that the measurement, if not exact, is at least unbiased (eg, serum cholesterol) and replicates
studies are sufficient to estimate the statistical magnitude of the error and make corrections for its impact. However, often
neither of these situations exists and the best that can be done is to compare the main measurement method used with
a method that although imperfect is thought to be better (calibration study with an imperfect reference measurement).”>
For example, body mass index (BMI), as a measure of body fat, may be compared with percent body fat measured by
bioelectrical impedance analysis.”® In Part 2, Section 6 of our article, we discuss these many cases where it is known that
the measured exposure is subject to considerable measurement error, but the measurement error model is in some sense
unknown.

5 | DESIGN OF STUDIES WHERE ONE OR MORE OF THE MAJOR
COVARIATES IS MEASURED WITH ERROR

In view of the impacts that measurement error or misclassification have on study results, it is advisable to take account of
the error at the design stage. To do that, aside from defining the main aim of the study and its target estimate, one needs
information on the measurement error model and its parameters. Only then can one make the appropriate adjustment to
the design in the form of a change in sample size, or more fundamentally a change in the measurement of the error-prone
variable in question. In addition, as we already showed in Section 4, the information about the measurement error model
plays a central role in making adjustments for measurement error in the analysis of the main study. A number of authors
have discussed design issues in the presence of measurement error.'%77-7

In Section 4, we described ancillary studies that are conducted to obtain information about the measurement error
model. We will now deal with determining how large such studies should be and then proceed to methods for cal-
culating statistical power in the presence of measurement error as an aid to deciding on the design of the main
study.
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Our focus in this section is on the size of the ancillary study. An alternative scenario is that a total cost is assigned and
that sample sizes for the main study and ancillary study are derived according to requirements for meeting a specified
objective. More work is needed on sample size calculations for this situation.

5.1 | Size of ancillary studies

Relatively little attention has been paid to the appropriate size of an ancillary substudy, and we provide here a guideline.
A first principle is that the size of the ancillary study is decided in relation to its contribution to the main study's goal.
Therefore, we must specify, among other things, what is the target of interest in the main study, and what is the desired
statistical power for testing the exposure-outcome association.

Asin Section 3.1.1, we limit ourselves to the situation of a single exposure X that is measured by X" with nondifferential
linear measurement error, and focus on the aim of estimating the slope in a simple linear regression model of a health
outcome Y on X. To recap, we consider the model:

E(Y|X) = fo + BxX. (21)
If we were to use X in place of X, then we would obtain instead a different regression model:
E(Y|X™) = 5 + pyX~. (22)

In the main study, Y and X~ are observed in all participants. In the ancillary substudy, a “reference” measurement,
R, equal to X or an unbiased measurement of X, is observed in addition to X". In the terminology of Section 4 we are
therefore in the situation of a validation or calibration study. As discussed in Section 3.1.1, the linear model in (22) does
not always hold, but is often a good approximation.

Recall from Section 3.1 that, when X" is measured with nondifferential linear error, the relation By = APx holds, where
A is the attenuation coefficient. Therefore, a simple “adjusted estimate” of fx is obtained by dividing the estimate of g5,
(that comes from the main study) by an estimate of A that is obtained from the ancillary study (see Section 6). In simple
cases, A is estimated by the slope of the linear regression of R on X". The variance of the adjusted estimate of fx can then
be expressed by the approximation®°

var( ﬁ;) ;Zvar(:l\)
+ .

P m (23)

var(fix) =

The second term on the right-hand side of (23) represents the extra uncertainty introduced into the estimate of fx by
the uncertainty in the value of 4. We may choose the size of the validation/calibration study to minimize the impact of
this extra uncertainty, specifically so that the second term of the right-hand side of (23) will be a small fraction, f, of the
first term. For example, if the size of the main study will provide 50% power for a test of the null hypothesis that gy = 0 at
the 5% significance level when the true value is fy, that is, that approximately Var(ﬁ;) = p;? /4, we obtain var(i) =fA%/4.
If the investigator is planning to test the association with exposure at a two-sided level a (maybe different from 0.05) with
power 1 — w (maybe different from 0.5), then the factor 4 may be replaced by [®~1(1 — @/2) + ®~1(1 — w)]?, where @ is
the standard normal cumulative distribution function. In the validation study case where the reference measurement R
equals X, we can apply the formula for the variance of a regression slope and, simplifying, we obtain the formula for the
sample size of the validation study n,, as:

2
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where pi - 1s the squared correlation coefficient between X and X"

For example, if f = 0.1, @« = 0.05, = 0.50 and px x+ = 0.4, then a sample size n, = 210 will ensure that the variance of
the adjusted estimate of fx will not increase by more than about 10% (f = 0.1) as a result of the uncertainty in estimating
A. Clearly, the larger the degree of measurement error, the larger the validation/calibration study that will be needed. If
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instead of a study with 50% power, the investigator plans a study with 90% power (w = 0.10), then n, = 550. Thus, the
higher the power desired in the main study, the larger the required validation/calibration study.

Note that the quantity pxx+ will not be known precisely before the validation study is conducted—indeed it is one of
the quantities that we hope to estimate from the validation study data. Consequently, a plausible value will need to be
specified in order to use formula (24). This is not unlike needing to specify an exposure's hitherto unknown effect on the
outcome in order to calculate the sample size of a main study.

If reference measurement R is an unbiased, but not exact, measure of exposure with random errors, as in a calibration
study, then a different formula based on the approximation Var()A») =fA?/[®7'(1 - a/2) + (1 — w)]?, may be derived for
n,. Kaaks et al>® supply details for the setting where there is a log-linear relation between the incidence rate of disease and
error-prone exposure of interest, albeit with very different notation. For problems with two or more exposures measured
with error, although the same principles may be used, the sample size formulas have not been derived.

5.2 | Calculating statistical power and sample size in the presence of measurement error
5.2.1 | ContinuousX and X"

In what follows, we assume that the investigator is planning the sample size by specifying the regression coefficient asso-
ciated with X. In this situation, adjustment for the measurement error needs to be made, as specified below. If, however,
the investigator prefers to specify the regression coefficient associated with X" (thus taking into account within this spec-
ification the measurement error) then no further adjustment is required and the material that follows in this subsection
is irrelevant.

For simplicity, we assume, as in Section 2.1, that the study is designed in order to elucidate the association between a
continuous exposure X and health outcome Y, and that X is univariate. We assume that in the main study we observe X",
and not X, where X" measures X with nondifferential linear measurement error. There may or may not be other exactly
measured covariates Z that need to be in the model relating Y to X.

In Section 3.1.1, just after Equation (7), we noted that when Y is continuous and is linked to exposure X through a lin-
ear regression, then when there are no covariates Z, the measurement error effectively lowers the sample size by pix*, the
squared correlation between X and X *If, however, there are covariates Z, the effect of measurement error effectively low-
ers the sample size by the factor p}z(x*| ,, the squared partial correlation between X and X " given Z. Thus, to achieve compara-
ble power to what would happen if X were observed, using X" requires increasing the sample size, sometimes dramatically.

Indeed, the sample size needs to be increased b