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We continue our review of issues related to measurement error and misclassifi-
cation in epidemiology. We further describe methods of adjusting for biased esti-
mation caused by measurement error in continuous covariates, covering like-
lihood methods, Bayesian methods, moment reconstruction, moment-adjusted
imputation, and multiple imputation. We then describe which methods can also
be used with misclassification of categorical covariates. Methods of adjusting
estimation of distributions of continuous variables for measurement error are
then reviewed. Illustrative examples are provided throughout these sections. We
provide lists of available software for implementing these methods and also pro-
vide the code for implementing our examples in the Supporting Information.
Next, we present several advanced topics, including data subject to both classi-
cal and Berkson error, modeling continuous exposures with measurement error,
and categorical exposures with misclassification in the same model, variable
selection when some of the variables are measured with error, adjusting anal-
yses or design for error in an outcome variable, and categorizing continuous
variables measured with error. Finally, we provide some advice for the often met
situations where variables are known to be measured with substantial error, but
there is only an external reference standard or partial (or no) information about
the type or magnitude of the error.
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1 | INTRODUCTION

In the first part of this article we presented the basic concepts underlying the effects of measurement error and misclas-
sification of variables, described validation and other types of studies that provide information regarding the statistical
properties of the error involved in measurement, discussed study design and impact of measurement error on sample
size, and presented some methods of adjusting inference for measurement error in simple but commonly occurring
situations in epidemiology. In this second part, we present some more complex methods of adjusting estimates or infer-
ence for measurement error and misclassification (Section 2), discuss methods to estimate a distribution of an outcome
subject to error (Section 3), review the software available for performing such analyses (Section 4), and describe some
recent developments regarding more advanced problems (Section 5). The methods described in both Parts 1 and 2 of our
tutorial are based on knowledge of the type and magnitude of the measurement error. In Section 6, we provide advice
on how to deal with the all-too-common situations in which such information is imperfect or not available for study
participants.

2 | ANALYSIS OF STUDIES WHERE ONE OR MORE OF THE MAJOR
COVARIATES IS MEASURED WITH ERROR—MORE COMPLEX METHODS OF
ADJUSTMENT

In Section 6 of Part 1, we described two methods of adjusting estimates of association between exposure and outcome
when a continuous exposure is measured with error—regression calibration (RC) and simulation-extrapolation (SIMEX).
Each of these methods is conceptually simple. For RC, the exposure measured with error is replaced by a predicted value of
the true exposure and the main analysis proceeds as usual, albeit with adjustment for the SEs of the estimated association
parameters. With SIMEX, one repeatedly introduces more measurement error to approximate a curve for the relationship
between the measurement error variance and the regression coefficient in order to estimate the value of that parameter
in the absence of measurement error. Sections 2.1-2.4 deal with some more complex but general methods for continuous
variables that have measurement error. Some of these methods, such as the Bayesian approach or multiple imputation
(MI), can also handle covariate misclassification. Section 2.5 discusses approaches for categorical variables subject to
misclassification.
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2.1 | Likelihood methods

Likelihood methods are pervasive in statistics. This section considers maximum likelihood estimation in measurement
error problems. However, likelihood is also a building block for Bayesian inference, which will be discussed in Section 2.2.
In the measurement error literature, discussion of maximum likelihood methods is given in the books by Carroll et al,’
Buonaccorsi,? and Yi.3

Figure 1 illustrates the steps in obtaining the likelihood function in order to carry out measurement error adjustment
and perform the likelihood analysis. For non-Berkson error (ie, classical or linear measurement error model), these steps
are as follows:

Step 1: Perform a likelihood analysis. One must specify a parametric model for every component of the data.
Any likelihood analysis begins with the model one would use if X were observable. We denote the likelihood of this
model as fy|x,z(Y | X, Z, B), where p denotes the parameters of the model. For example, in logistic regression, with
H(s) = exp(s)/{1 + exp(s)}, the likelihood function is:{H(Bo + X  fx + ZT )} {1 —H(Po+ X px + ZT )} Y.

Step 2: Choose the error model. This could be a classical error model, a linear measurement error model, a Berk-
son model, and so on. Presuming non-Berkson error, the likelihood of the model for X* given (X, Y, Z) can be denoted
by fx+x,v,z(X* | X, Y, Z, a), where a denotes the parameters of the model. In the case of nondifferential classical
measurement error, for example, if the measurement error is normally distributed with constant variance ai,, then
fexyzX* | XY, Z,0}) = (szf,)'% exp{—(X* — X)*/(267,)}. Note that this is a slightly stronger version of nondifferen-
tial error, which in general only requires X* to be conditionally independent of Y given X. Here, X* is conditionally
independent of Y and Z given X.

Step 3: If one has a classical or linear measurement error model, specify a distribution for the unobserved X given the
observable covariates Z, which we call fx|z(X| Z, y). The need to estimate the distribution of the unobserved X given Z is
described in detail in chap. 8 of Carroll et al.! For example, one might assume that X is normally distributed with mean
Yo+ Z"yz and variance o}. In this example, fxz(X|Z,y) = (27[6)2()_% exp{—(X —yo — Z"y2)*/203)}.

Step 4: Form the likelihood. When X is not observed and is continuous, the likelihood function of the observed (Y, X*)
given Z is /leX,Z(Y |X, Z, ﬂ)fx* |X,Z(X* |X, Z, (Z)fx|z(X| Z, )/)dX If X is discrete, the likelihood is nyp(, Z(Y |X, Z,
B x+1x,2X* | X, Z, )f x| 2(X| Z, 7).

Step 5: Find the values of the parameters (f,a,y) that maximize the likelihood.

Asabriefaside, note that Steps 2 through 4 are specific to non-Berkson error and the analogous procedures for Berkson
error would be rather different. Typically, a nondifferentiality assumption would be needed, so that the Step 1 specification
isin fact for (YIX, X*, Z). Then the other required specification is the Berkson model for (X|X*,7), and the product of the
two specified densities describes (Y, X|X*, Z). This is then integrated to yield a likelihood function based on (Y1X*, Z).

Step 1: Specify the likelihood
model as if X were observed

A4

Step 2: Specify the error model,
either classical or Berkson

A

Step 3: If classical, specify
model for unobserved X given Z

Step 4: Compute loglikelihood

A

Step 5: Maximize loglikelihood

FIGURE 1 Flowchart for the steps in a likelihood analysis
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Steps 4 and 5 (or their counterpart in the case of Berkson error) involve the sometimes hard work of computing and
maximizing the likelihood function to obtain parameter estimates. Because X is latent, that is, unobservable, these steps
can be difficult or time-consuming, because one must integrate out the possibly high dimensional latent variable. Below,
we provide a few details about computing and maximizing the likelihood function.

The overall likelihood based on a sample of n individuals is the product of each individual's likelihood function.
Typically, one maximizes the logarithm of the overall likelihood in the unknown parameters. There are two ways to
maximize the likelihood function. The most direct is to compute the likelihood function itself, and then use numerical
optimization techniques. The second general approach is to view the problem as a missing-data problem, and then use
missing-data techniques; see for example Little and Rubin,* Tanner,> and Geyer and Thompson.®

Computing the likelihoods analytically is usually easier if X is discrete, as the conditional likelihoods are simply
sums of terms. For likelihoods in which X is continuous, standard numerical methods for integration, such as Gaussian
quadrature, can be applied. When sufficient computing resources are available, the likelihood can be computed using
Monte Carlo techniques.

There are many computer routines for minimizing functions. Since we want to maximize the log likelihood, it is typical
to multiply the log likelihood by —1 and then minimize it: the inverse of the Hessian matrix in such a computation serves
as an estimate of the joint covariance matrix of all the parameters. See Section 4.4 for further comments on software for
performing likelihood-based analyses.

The above description covers cases where X is not observed. In cases where X is observed for a subset of individuals
in an internal validation study, the likelihood of the observed (Y, X, X*) conditional on Z must be computed for those
individuals separately from the remainder of the participants and then the two sets of likelihoods combined. Similarly, if
the internal validation study involves measurement of, not X, but an unbiased measurement X** of X, then an additional
measurement error model must be specified for X** and the likelihood of the observed (Y, X*, X**), conditional on Z,
computed separately for the individuals having measurements of X**.

To illustrate the likelihood approach, we use an example already introduced in Part 1 of this article (Section 6). To
recap briefly, the Observing Protein and Energy Intake (OPEN) study’ was a dietary intake validation study using unbi-
ased reference measurements, conducted in 483 adult volunteers. Participants reported on their dietary intake using a
food frequency questionnaire (FFQ), provided two 24-hour urine samples for measuring potassium intake, and provided
samples for measuring total energy intake through a technique known as doubly labeled water. The target dietary mea-
sure is considered to be average daily potassium density intake, that is, the ratio of potassium intake to total energy intake.
The questionnaire responses are considered to have linear measurement error and the urinary biomarker data are consid-
ered to have classical measurement error (since they measure only a single day's intake). The issue to be addressed is the
association of log potassium density intake with a person’s body mass index (BMI). The dataset is referenced as “Selected
OPEN data” (2018).8

In this analysis, although each participant provided urine samples to measure potassium intake, we assume, as in
Part 1, that these were available in only the first 250 participants, so that the “reference” measure is available in only a
subsample of the 483 participants. The analysis was performed using the CALIS procedure in SAS. The models required
in Steps 1-3, namely the BMI outcome model (model for Y), the FFQ log potassium density intake measurement error
model (model for X*) and the log potassium density intake exposure model (model for X) are specified in the upper part
of Table 1. Note that in this example X itself is not observed, even in the validation subset, and instead the biomarker log
potassium density X**, an unbiased measure of X, is observed in a subset. The measurement error model for X** must
also be included (see Table 1). Estimates of the regression coefficients in the outcome model are presented in the middle
part of Table 1. These results are later compared with those of Bayesian methods (Section 2.2), moment reconstruction
(MR) (Section 2.3), MI (Section 2.4), and RC (Part 1, Table 2)—see the discussions at the end of Sections 2.2, 2.3, and 2.4.

2.2 | Bayesian methods

Arguably there are advantages and disadvantages to taking a Bayesian standpoint when addressing measurement error
problems. Perhaps the biggest advantage of a Bayesian approach to measurement error correction is an inherent logical
and conceptual simplicity. After specifying appropriate submodels and prior distributions for the unknown parameters
therein, the remaining steps are then a matter of computation. A joint posterior distribution of the unknown parameters
ensues, and all inferences stem from this in a logical manner. However, this does require committing to specific prior
distributions for all unknown parameters, and not all users will be comfortable with this.
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TABLE 1 Analyses of the association of log potassium density intake with body mass index, using maximum likelihood estimation
and Bayesian methods: data from the 483 participants in the OPEN study

Notation

X = true log potassium density; Z; = Sex; Z, = Age; X* = FFQ log potassium density; X** = biomarker log potassium density; Y = BMI
Models

Outcome model YIX,Z1,Z, ~N(Bo + BxX + p1Z1 + 225, 6.%)

Measurement error model 1 X*X,Z1,Z, ~N(ag + axX + a1 Z1 + a,Z,, oy2)

Measurement error model 2 X**|1X ~ N(X,02,.)

Exposure model XI|Z1,Zy ~N(yo + 7121 +v2Z5, 6x%)

Maximum likelihood results for outcome model

Coefficient Estimated coefficient SE 95% CI P-value
Log potassium density, fx -7.19 1.25 —9.64, —4.74 <.001
Sex (Fv M), §; -0.03 0.51 -1.03,0.97 95
Age (years), f, 0.09 0.03 0.03,0.15 .004

Bayesian results for outcome model

Coefficient Estimated coefficient Posterior SD 95% credible limits Posterior probability of being >0
Log potassium density, fx —6.08 1.43 —9.38, —3.78 <0.005

Sex (Fv M), §; -0.30 0.51 -1.30,0.71 0.27

Age (years), f, 0.08 0.03 0.02, 0.15 >0.995

As soon as it was recognized that Markov Chain Monte Carlo (MCMC) computational techniques greatly expand the
“domain of applicability” for Bayesian methods,” applications to measurement error adjustment quickly followed.!%12 An
overview of the Bayesian approach to adjusting for measurement error is provided by Gustafson.! Bartlett and Keogh'#
make specific comparisons between Bayesian adjustments for measurement error and RC (Part 1, Section 6.1), maximum
likelihood (Part 2, Section 2.1), and MI (Part 2, Section 2.4).

To give a specific example, suppose one has a parametric exposure model fx|z(X|Z, y) for (X | Z) parameterized by y,
a parametric outcome model fyx, z(Y | X, Z, B) for (Y | X, Z) parameterized by §, and a parametric measurement error
model fx+|x,v,z(X* | X, Y, Z, a) for (X* | Y, X, Z) parameterized by a. Note that these are the same specifications as
required for a likelihood analysis, as described in Section 2.1. Furthermore, assume there is a validation subsample, such
that additionally the actual exposure X is observed for the first n of the N study subjects. Then the joint posterior density
of all parameters (in this instance [, 8, y]) and latent variables (in this instance X[, +1}.v) can be expressed as

Joost(@, B, 7, Xnay:n | Xion, X5, Y, D)8 ) &« fxizXn | Zuen, ¥) X frixz(Yin | (X, 2)1:N, B)
X feyxzX v | V., X, 218, @) X forior (e, B, 7),

where the four terms on the right-hand side are, in order, the exposure model density, the outcome model density, the
measurement error model density, and the prior density of all the parameters. MCMC methods can be applied to draw
simulated samples from this joint posterior density, hence the drawn (a, §, y) values (upon ignoring the drawn X, 4+ 1):n
values) are representative of the posterior distribution of the unknown parameters given the observed data. Bayesian point
and interval estimates are thereby computed as appropriate summaries of this MCMC output. Note that this approach
frees the user from having to explicitly join together two likelihood functions, one for the unvalidated observations and
another for the validated observations as described in Section 2.1. Arguably this is a simplifying feature of proceeding in
a Bayesian fashion.

As was seen to be the case with likelihood methods, using the Bayesian paradigm to “glue together” three submodels
for exposure, outcome, and measurement has the appealing feature that uncertainty propagates across these submodels
in a manner that is both principled and automatic. For instance, reported uncertainties (say posterior SDs or credible
intervals directly computed from the MCMC output) about estimated outcome model parameters fully acknowledge
the uncertainty about measurement error model parameters and exposure model parameters. So the data analyst is less
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burdened by issues of whether uncertainties are correctly propagated than is the case for, say, RC (see Part 1, Section 6.1)
or SIMEX (see Part 1, Section 6.2) approaches.

Against this coherence and logical simplicity, there are some challenges. General-purpose MCMC software for
Bayesian analysis is available, including packages such as WinBUGS, JAGS, and STAN. However, some very specialized
submodel specifications may not be supported by some packages. There is also the more pervasive issue that MCMC
works better for some models and datasets than others, such that there is a need to examine the sampled draws to rule
out problems with convergence and/or mixing of the MCMC algorithm. (MCMC methods draw realizations of a Markov
chain specially constructed to have the posterior distribution of parameters and latent variables as its stationary distribu-
tion, relying on the fact that a Markov chain converges to its stationary distribution under weak assumptions.) Bayesian
computing is not yet at the level of an “automated black box.” In addition, it can be more challenging to relax modeling
assumptions when working under the Bayesian paradigm. That is, going from parametric to semiparametric or nonpara-
metric analysis becomes quite intricate, even though there has been much research on Bayesian nonparametric methods
over the last decade. Articles by Sarkar et al'>1® and Sinha and Wang!” are recent examples that bring nonparametric Bayes
technology into measurement error adjustment problems. Finally, as with all Bayesian analyses, some see the requisite
specification of a prior distribution of the unknown parameters as a blessing, while others perceive it as a curse.

Much of the measurement error literature presumes a “hard” source of information about the measurement error
magnitude, via observed replicates of a measurement X* that has classical measurement error, or data from a validation
subsample. Implicit here is the notion that if the amount of data increases in the right way, then the values of all the
parameters, including those describing the measurement error process, would be revealed, that is, estimated consistently.
However, Bayesian methods also offer the alternative possibility of using “soft” information. For instance, in the absence
of replicates or a validation study, subject-area experts could assert a range of plausible measurement error magnitudes;
a prior distribution that puts the vast majority of its mass on this plausible range could then be chosen. Of course, this
sort of uncertainty would not diminish as more data are collected; so one must bear in mind that the final answer incor-
porates the usual statistical uncertainty arising because the sample size is finite, as well as the uncertainty in the experts'
opinions about the measurement error magnitude. Related, there is no “free lunch.” If one places a very diffuse (or even
“improper”) prior distribution on the measurement error magnitude, a correspondingly diffuse (or even “improper”) pos-
terior distribution will result. No useful measurement error correction can arise without either data or expert opinion to
inform the magnitude of the measurement error.

We illustrate the Bayesian approach through the same example presented for the maximum likelihood analysis in
Section 2.1. The analysis was performed in RTAGS. The exposure model, outcome model and measurement error models
are the same models for the likelihood approach in Section 2.1 and are specified in the upper part of Table 1. Prior distri-
butions with minimal information were adopted for the parameters of the exposure model, outcome model, and measure-
ment error models; all regression coefficients were given normal priors (with mean zero and variance 1000) and precision
(reciprocal of variance) parameters were given gamma priors (with shape and rate both set to 0.01). Estimates of the
regression coefficients in the outcome model are presented at the bottom of Table 1. The results are rather similar to those
of maximum likelihood presented in the middle of Table 1, and we will see they are also similar to those of the MR and
MI approaches to be discussed in the next section. The posterior SD for the target parameter (describing the relationship
between potassium intake and BMI) (1.43) is comparable to the SE obtained for the maximum likelihood estimate (1.25).

2.3 | MR and moment-adjusted imputation

MR and moment-adjusted imputation (MAI) are methods for handling covariate measurement error in which the goal is
to construct a quantity Xy (X*, Y) that has the same distribution as X, and such that (Xy;,Y) has the same joint distribution
as (X,Y). If covariates Z are also to be included in the regression of Y on X, then the above distributions are conditional
on Z. The quantity X (X*, Y) is generally constructed by estimating moments of the joint distribution of (X, Y) from
validation data, and then is substituted for X into the desired outcome regression model to produce an estimate fx. SEs
that account for the extra variability in the resulting estimate of fx, which comes from the uncertainty in the parameter
estimates used to construct X (X*, Y), are necessary and can be obtained using the bootstrap. The bootstrap sample in
this case is stratified on membership in the validation subset.

In MR,'® X\ (X*, Y, Z) is constructed by matching only the first two moments of the joint distribution for (X, Y). In
the case of classical measurement error this is achieved by defining X\ (X*, Y, Z) as:

XmX*,Y,Z) = EX"|Y,Z)+ G{X* - EX*|Y,Z)}, 1)
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where G = var(X | Y, Z)"?{var(X* | Y, Z)}'V/2. This expression can be extended to the linear measurement error model by
replacing the first E(X* | Y, Z) on the right hand side with E(X | Y, Z), keeping G as before.!® When the measurement
error parameters are assumed known and the error is nondifferential, MR is equivalent to RC in linear regression, and
is therefore consistent. When the measurement error is nondifferential and the error model parameters are estimated in
an ancillary study, MR is not equivalent to RC, but both are consistent. MR is also consistent for logistic regression with
normally distributed covariates, unlike RC which is only approximately consistent (Carroll et al'lP-*1). Under conditions
of differential measurement error, MR is still consistent as the necessary moments are estimated conditional on Y, and
in this it can prove advantageous compared to RC, which is biased.

MALI is an extension of MR, in which the moments of (X (X*, Y, Z),Y | Z) match more than the first two moments
of (X, Y | Z). Thomas et al*® recommended matching the first four moments and observed that when X is normal, its
performance is similar to RC in linear and nonlinear regression models. However, MAI has been shown superior to RC
for logistic regression where the distribution of X is far from normal. MR and MAI may also be used for several covariates
measured with error.!$%!

We illustrate MR with an example from the OPEN study, similar to the one in the previous two sections. We
consider the regression of BMI on log sodium intake, while controlling for age and sex. We choose this example
as there is evidence in the data that the measurement error in self-reported FFQ sodium intake is differential with
respect to the BMI outcome variable, so that RC is an inappropriate method of adjustment. The estimated regres-
sion coefficients of the unadjusted model, using FFQ-reported sodium intake, are presented in the second column of
part A of Table 2. The estimated coefficient for log sodium intake is 1.13, and its z-value 1.97. However, the z-value
(unlike for a single covariate with nondifferential error) is invalid because the error is differential (see Part 1, Table
1). Parts B1 and B2 of Table 2 show the results of the models for E(X1Y,Z) and E(X*|Y,Z), which are both needed
for the construction of Xy (X*,Y,Z) = E(X|Y,Z)+ G{X* — E(X*|Y,Z)}. The third column of Part A of Table 2 shows
the MR adjusted estimated coefficients for log sodium intake, age, and sex. The SEs are obtained by bootstrap. One
can see that the estimated coefficient for log sodium intake is 12.21, about 10 times larger than the unadjusted esti-
mate, with a z-value of 4.53. This means that a 30% increase in sodium intake (change in log sodium intake of 0.26)
is associated with an increase of 3.2 BMI units (95% CI: 1.8-4.5), rather than 0.3 units obtained from the unadjusted
model. (Note that this very large effect cannot be directly causal since sodium is a micronutrient, supplying no calo-
ries. However, it indicates that high sodium intake is associated with higher BMI, probably because sodium intake
is strongly correlated with energy intake.) There is also a notable change in the coefficient for sex from a nonsignif-

icant negative association (z = —0.46) in the unadjusted analysis to a significant positive association (z = 3.16), that
is, higher BMI in women than men for a given age and sodium intake (but see also the result for MI, given in
Section 2.4).

MR can also be used as an alternative to RC when measurement error is nondifferential. In that case, it can be more
efficient or less efficient than RC depending on the type of data at hand. If we apply MR to the same problem as used in
Part 1, Section 6.1.1, namely the regression of BMI on log potassium density, we obtain a remarkably improved result over
that from RC, in terms of the variance of the adjusted estimate. One can directly compare the estimates for RC presented
in Part 1, Table 2 with those obtained for MR here in the third column of Table 3. The estimated regression coefficient
for log potassium density is —8.13 (compared to —3.76 for RC) with a bootstrap SE of 1.77 (compared to 2.49 for RC). For
the full result of the final model, see the third column of Table 3. In this case, MR is more efficient than RC and reveals
a significant negative association of potassium density with BMI. The circumstances that cause the greater precision of
MR over RC are (i) the quite strong association between outcome and exposure and (ii) the availability of the biomarker
in more than 50% of the participants. In many studies, the association between the outcome and exposure variable is
much weaker (eg, in studies of disease incidence) and the validation data are available in a much smaller proportion of
participants, causing RC to be more efficient than MR (see Freedman et al**). We will further consider how MR compares
to MI for this example in the next section.

2.4 | Multiple imputation

When there is an internal validation subset, in which (X, X*, Z, Y) are all observed, then the case of measurement
error is really just a problem of missing data.?? If individuals in the validation sample are a random sample of the
main study population then the unobserved X is missing completely at random; if the sample is dependent by design
on covariates, then X is missing at random (Little and Rubin,*2p11). In either case, the distribution of X | X*, Z, Y
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TABLE 2 Analyses of the association of log sodium intake with body mass index, using analyses unadjusted for covariate

measurement error, moment reconstruction, and multiple imputation

Part A: Outcome regression parameter estimates

Variable Unadjusted Moment Multiple
analysis § (SE) reconstruction g (SE) imputation g (SE)
Log sodium intake 1.13 (0.57) 12.21 (2.709 11.02 (2.65Y)
Sex (F vs M) —0.23 (0.51) 3.16 (1.009) 2.75 (1.45Y)
Age (years) 0.037 (0.029) 0.052 (0.035%) 0.051 (0.070%)
Part B: Regression models needed for Moment Reconstruction
BI: Model of biomarker log sodium intake on BMI,  Estimated SE z-Value
sex, and age® coefficient
Intercept 8.03 0.19 43.4
BMI (kg/m?) 0.031 0.004 7.81
Sex (F vs M) -0.29 0.04 —-7.00
Age (years) —0.0027 0.0025 -1.11
Residual variance 0.0965
B2: Model of FFQ log sodium intake on BMI, sex Estimated SE z-Value
and age coefficient
Intercept 8.43 0.170 49.53
BMI (kg/m?) 0.0071 0.0036 1.97
Sex (F vs M) —-0.28 0.04 -7.27
Age (years) —0.0062 0.0023 —2.68
Residual variance 0.1736
Part C: Regression models needed for multiple imputation
Model of biomarker log sodium intake on FFQ log Estimated SE z-Value
sodium, BMI, sex, and age®? coefficient
Intercept 7.54 0.45 16.93
FFQ log sodium intake 0.059 0.049 1.22
BMI (kg/m?) 0.030 0.004 7.47
Sex (F vs M) —-0.27 0.04 -6.22
Age (years) —0.0022 0.0025 -0.91
Residual variance 0.0963

Note: Data from the 483 participants in the OPEN study.

2From a bootstrap sample of 5000.

®From 500 multiple imputations.

“Based on a random subsample of 250 participants.
dUsed to impute biomarker log sodium intake.

is the same for those in the validation sample as for those who are not; thus, the values of X can be imputed from a
model for X | X* Z, Y. MI, in which the unobserved values X are imputed m times, allows estimation of the coeffi-
cients in the outcome model and their SEs (Little and Rubin,*ch2P-101) Under a correctly specified model for X | X*,
Z, Y, MI will produce consistent estimates for fx and consistent SEs. Like MR and MAI, and unlike RC, MI can
handle differential measurement error, since Y is used for imputing the unknown X. The same procedure can be
used if the error is assumed to be nondifferential, and a more efficient version of MI may also be constructed under
this assumption. Freedman et al'® found that in circumstances where RC outperformed default MI, the “nondiffer-
ential” MI method performed similarly to RC. Here, we focus entirely on the default version, which accommodates
differential error.
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TABLE 3 Analyses of the association of log potassium density intake with body mass index, using analyses unadjusted for
measurement error, moment reconstruction, and multiple imputation

Variable Unadjusted ANALYSIS S (SE) Moment reconstruction g (SE) Multiple imputation g (SE)
log potassium density —1.69 (0.93) —8.13 (1.779 —7.28 (2.03Y

Sex (F vs M) —0.38 (0.49) 0.04 (0.539 0.05 (0.739

Age (years) 0.039 (0.29) 0.101 (0.0359) 0.094 (0.048Y)

Note: Data from the 483 participants in the OPEN study.

2From a bootstrap sample of 5000.

bUsing 500 multiple imputations, where the imputation model for the biomarker log-potassium intake was based on a random subsample of 250 participants
and included the self-reported FFQ log-potassium density, sex, age (years), and BMI.

As with any setting, the success of MI relies on having sufficient data to build a reliable imputation model and on
correct specification of that model. For this reason, MI is generally not recommended when only an external validation
study is available, and coincident measures of Y are not available,!%23

It is also possible to use MI when there is an internal validation subset in which, instead of X, a measure of X that has
classical measurement error is obtained, as well as X*, Y and Z (a calibration study—see Part 1, Section 4.2). However,
in this case, implementation of the method is a little more involved than usual MI. Details are provided in sect. A2 of
appendix A in Freedman et al.!® This method is the one used in the examples that follow. Note, Keogh and White?*
described an MI approach for use in the setting of a replicates study, assuming availability of repeated measures of the
error-prone covariate in some individuals, and assuming classical error. More recently, another approach for the setting
of a validation or replicates study has been described® based on a modification of the substantive model compatible
imputation approach for missing data described by Bartlett et al,?® and accompanying software is available in R.?’

To illustrate MI, we use the same two examples as given for MR in Section 2.3. First, we consider the regression of
BMI on log sodium intake, while controlling for age and sex. The results are presented in Table 2. Part C of the table
shows the model that is used as a basis for imputing the unknown values of true log sodium intake. Note that this is based
on a regression of the biomarker log sodium intake on the FFQ log sodium intake, BMI, age, and sex. One can see that
the main variables influencing the imputation are BMI and sex. Note the strong effect of BMI in the imputation model
does not imply differential error. The fourth column of Part A shows the estimated model of BMI on log sodium intake,
age, and sex, based on 500 MIs. Generally, using a relatively large number of MIs is recommended, since one is imputing
100% of the values for the unknown true log sodium intake, although no formal recommendations have been established
on the number of imputations required in this context. The results are similar, although not identical, to those obtained
from MR (third column, part A of Table 2). The coefficient for log sodium intake is again about 10 times the unadjusted
estimate and is highly statistically significant. The coefficient for sex is large and positive but, unlike for MR, does not
attain conventional statistical significance. Discrepancies between the results of the two methods are not very common,
but a careful analyst would perform both methods, where possible, to check on the stability of results. What is clear from
the results of both methods is that the association of BMI with sodium intake appears far stronger than that indicated in
the unadjusted analysis.

As mentioned with MR, one may use MI also in cases of nondifferential measurement error. We applied MI to the
example of Part 1, Section 6.1.1, which was the analysis of the association of BMI with log potassium density. The results
are shown in the final column of Table 3. The results are in accord with those of MR, indicating a strong negative associ-
ation of BMI with potassium density intake. The same remarks made in Section 2.3, about the relative efficiency of MR
compared to RC, apply also to MI. The results of MR and MI presented in Table 3, showing a strong negative association
between BMI and log potassium density, are rather similar to those for the likelihood method presented in Table 1. How-
ever, the SE (1.25) of the regression coefficient for log potassium density intake is considerably smaller for the likelihood
method than for the MR and MI analyses (1.77 and 2.03, respectively). A possible explanation for this is that the maxi-
mum likelihood analysis included all the data, whereas the MR and MI analyses, for simplicity, omitted 13 participants
who provided one urine sample only (instead of two) for the measurement of potassium density. When the datasets are
identical one would expect MI and maximum likelihood to yield very similar estimates and SEs.

The performance of MI has been compared with other methods, including RC and MR in settings of linear and logistic
regression!®?328 and Cox regression.???° These authors found that the optimal method depends on the size of the valida-
tion subset and degree of measurement error. Shepherd et al?® noted MI worked well in the setting of correlated covariate
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and outcome measurement error in the linear model. With censored survival data, implementing MI can be especially
challenging; Bang et al*® recommended implementing multiple methods to compare sensitivity of results to assumptions
since in reality one rarely knows the true model for the error structure. In the case of a linear outcome and linear nondif-
ferential measurement error model, a method of moments (MOM) approach can also be applied.? In this case we expect
the performance of MOM to be similar to that of RC, as seen by Shaw et al.>°

2.5 | Analysis of studies where one or more categorical covariates are subject
to misclassification

Section 2 of this article and Section 6 of Part 1 have addressed various methods that can be applied when a continuous
covariate X is measured with error. The “methods menu” one can choose from when faced with a categorical covariate
subject to misclassification is similar, but not identical.

Likelihood (Section 2.1) and Bayesian methods (Section 2.2) transfer directly and simply from the continuous covariate
case to the discrete case. In fact, these methods are arguably more attractive in the discrete case, since concern about
possible model misspecification (for the distribution of the unobservable X) is typically reduced. If X is binary and there
are no precisely measured covariates, then X must follow a Bernoulli distribution, so that there is no concern about
misspecification. If there are precisely measured covariates Z, then a model for X | Z is required, and misspecification
could arise. For instance, a logistic regression relationship between X and Z might be posited, and might be wrong. But
more fundamental concerns about the shape of the X distribution do not apply when X is categorical. So likelihood and
Bayesian methods, as per Sections 2.1 and 2.2, can be applied as described. The variable type for X is not particularly
consequential for these methods.

In some simple situations, notably when Y and Z (if applicable) are also categorical, closed-form estimation of param-
eters is sometimes possible. This literature dates back to at least Barron3' who proposed the closed-form “matrix method”
applicable when there are main study data in the form of a 2 by 2 table for binary (X*, Y) and validation data in the
form of a 2 by 2 by 2 table for binary (X, X*, Y). Subsequently, Marshall3? proposed an alternative closed-form estimator,
known as the “inverse matrix method,” by framing the classification in terms of predictive values rather than speci-
ficity and sensitivity. Later work, notably that of Morrissey and Spiegelman,?* Lyles** and Greenland?® served to both (i),
quantify the efficiency of these closed-form estimators relative to iteratively computed maximum-likelihood estimators,
and (ii), understand nuances of how the various methods work under differential and nondifferential misclassification
assumptions.

In more involved contexts, the expectation-maximization (EM) algorithm is quite straightforwardly applied to com-
pute maximum likelihood estimates of parameters in the (Y | X, Z) model.*® Also, just as a categorical X variable is
particularly amenable to the EM algorithm for likelihood estimation, it is also particularly amenable to MCMC methods
(and Gibbs sampling specifically) for computing Bayesian estimates. See Joseph et al,3” Gustafson et al, Johnson et al,®
and Prescott and Garthwaite*® for examples.

Both RC and MR are less obvious strategies to pursue explicitly when X is categorical. However, some of the estimators
discussed in Morrissey and Spiegelman,3® Lyles,3* and Greenland3® indeed end up having a RC spirit. That is, they can
be viewed as replacing X with an estimate of E(X | X*, Z). Also, MI can certainly be applied to problems involving a
categorical X. In fact, this approach will be rather similar to a Bayesian analysis using MCMC computation.

The SIMEX method, described in Part 1, Section 6.2, has been extended to handle a categorical X variable that is subject
to misclassification, using a method termed MC-SIMEX. Suppose we have a regression model with a discrete covariate X
which is subject to misclassification.*! The misclassification process is described by the matrix IT, which is defined by its
components

;=P X" =ilX=j,i=1,...,r; j=1,..,r )
I1is a r X r matrix, where r is the number of possible outcomes for X. MC-SIMEX employs the function (s > 0) defined by:
Px(s) = P (IT°), (3)

where fx-(IT¥) denotes the value of the coefficient f* when X* is subject to misclassification by IT¢, defined as EASE™!,
with A being the diagonal matrix of eigenvalues and E the corresponding matrix of eigenvectors. For integer values of s,
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TABLE 4 Datafrom a study of risk factors for sudden

. . X=0 X=1 X unobserved Total
infant death syndrome (Kraus et al*?): Y = sudden infant
death syndrome (case = 1, control = 0); X = antibiotic use Y=0,X*=0 168 16 479 663
during pregnancy according to medical record (yes = 1, Y =0,X*=1 12 21 101 134
no = 0); X* = antibiotic use during pregnancy according to

. Y=1,X*=0 143 17 442 602
mother's report (yes = 1, no = 0)

Y=1,X*=1 22 29 122 173

IT' +3 = IT® *II, where * denotes matrix multiplication, and for s = 0, I1° = I, . The central idea of the MC-SIMEX method
is to add extra misclassification to X*. Namely, if X* has misclassification probabilities ITin relation to variable X, and X*(s)
is related to X* by the misclassification matrix IT%, then X*(s) is related to X by the misclassification matrix IT' +$, when
these two misclassification mechanisms are independent. Thus, the SIMEX algorithm can be applied to misclassification
in the same manner as the original SIMEX. For details, including the variance estimation, see for example, Kiichenhoff
et al.*?

As an example of adjusting for misclassification in a binary explanatory variable X, we consider the study reported by
Kraus et al* on risk factors for sudden infant death syndrome (SIDS). Here X is defined as an indicator of maternal use
of antibiotics during pregnancy, as ascertained from medical record review, while X* indicates the mother's self-report of
antibiotic use on a questionnaire. The study employed a case-control design (though the same analysis would apply for a
cross-sectional or prospective study), recruiting 797 controls (Y = 0) and 775 cases (Y = 1) of SIDS. Since medical record
review was only conducted for a subset of 217 of the controls and 211 of the cases, we are presented with a misclassified
data problem with an internal validation study. The data are presented in Table 4. If we ignore the X measurements
available for the validated study subjects and simply focus on the (X*,Y) association, we estimate a log odds ratio (OR) of
0.35 (corresponding to OR = 1.42), with a SE of 0.13, indicating a positive association.

A number of authors have illustrated misclassification adjustment methods using data from this study, including
Greenland* and Chu et al,* who contrast multiple methods, including maximum likelihood methods, Bayes methods,
and SIMEX. Suspecting the possibility of differential misreporting, they applied a likelihood ratio test for the null hypothe-
sis of conditional independence of X* and Y given X to the data on validated subjects, obtaining some evidence against the
null (P = 0.096). Thus, we focus on an adjustment method that allows for differential misclassification. While Section 2.1
alludes to general implementation challenges for likelihood methods arising because X is latent, obtaining maximum
likelihood estimates in the present context is actually quite straightforward. As detailed by Lyles,* we can reparameter-
ize the problem in terms of the (X*,Y) and (X|X*,Y) distributions, rather than the (X,Y) and (X*|X,Y) distributions, with
all the study units contributing to estimation of (X*,Y’) but only the validated study units contributing to the estimation
of (X1X*,Y). Lyles3* shows that one can then work back to obtain closed-form estimates and SEs of parameters in the
original parameterization. Applying this method to the data at hand results in an estimated (X,Y’) log odds-ratio of 0.19
(corresponding to OR = 1.21), with a SE of 0.22. Note that this adjustment for misclassification pushes the point esti-
mate toward the null, as can arise when misclassification is differential. For comparison, if we presume nondifferential
misclassification, then the maximum likelihood estimate of the (X,Y’) log odds-ratio, as determined by numerical maxi-
mization, is 0.40 (corresponding to OR = 1.49), with a SE of 0.19. As must arise when nondifferential misclassification is
presumed, relative to the naive estimate, the adjustment moves the estimate away from the null, and increases the cor-
responding measure of uncertainty. Generally, this example is another where the medical conclusions to be drawn from
the analysis are changed substantially by taking reporting error into account.

3 | ANALYSIS METHODS FOR ESTIMATING DISTRIBUTIONS

In Part 1, Section 3.4, we briefly discussed the impact of measurement error on estimating the distribution of a random
variable Y. In this section, we consider methods for estimating the distribution of Y using error-prone observations Y*.
In contrast to prior sections, here the error-prone variable measures the outcome of interest (Y) rather than a covariate
(X). We focus on the case where Y is continuous. For example, it might be of interest to know selected percentiles of
the distribution of Y, or related quantities such as the interquartile range. Alternatively, one might wish to know what
proportion of the distribution falls above or below specific cut-points. In Section 3.4 of Part 1, we briefly considered how
such distributional quantities can be biased if estimated by an error-prone Y*. Most of the methods presented here focus
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on the case where Y* follows the classical measurement error (model (1) in Section 2.1 of Part 1). Development of these
methods has been most pronounced in the field of nutrition, where the desired random variable Y is the long-term average
daily consumption (“usual intake”) of a food or nutrient, and Y* is typically the reported intake from a 24-hour dietary
recall, which queries everything eaten or drunk during the previous 24 hours. Under this scenario, a substantial amount
of the measurement error U is assumed to be due to day-to-day variation in diet that makes a single day an imprecise
proxy for a long-term average.*#” Other sources of systematic error are routinely assumed to be zero in these methods,
although there are exceptions.*

3.1 | A simple case

Consider the simplest case of model (1) (Part I), where E(Y) = uy, E(U) =0, var(Y) = 012, andvar(U) = agj. Then E(Y*) = uy
and var(Y*) = 612, + a%,. It follows that the distribution of.

2
¥ =B + 1| 5 (V" — B, @
oy + oy

has the same first two moments (uy,oy,) as the distribution of Y. This approach, applied to interval data, was used by
the National Research Council (NRC),* where replicated observations Y* were available to permit separate estimation
of the required variance components in Equation (4). In general, for this classical measurement error setting, one can
estimate var(U) by the within-person variance when there are replicate measurements; var(Y’) can then be estimated by
subtracting the estimate of var(U) from var(Y*). If Y and U are normally distributed, then Y* is as well, and matching the
first two moments of Y is equivalent to fully characterizing the distribution. Thus, the empirical distribution of Y may be
used as an estimate of the distribution of Y. This approach of constructing a set of representative observations to be used
as a basis for an empirical distribution estimator can be extended to the more complex cases discussed below.

3.2 | Use of normality transformations

The NRC report® highlighted the fact that 24-hour recall data (Y*) tend to be skewed, suggesting that the normality
assumption is not tenable in the original scale. Therefore, transformations are routinely applied to observed data as a
first step in distribution estimation. This is a complication that requires a careful choice of assumption about how Y and
Y* are related. In the NRC analysis, formula (4) was applied to log transformed data, and each estimated percentile of
the distribution of Y was exponentiated to obtain the corresponding percentile in the original scale. This approach is
consistent with the model.

&Y =g¥)+U, ©)

where g(-) is an invertible transformation. That is, Y* is unbiased for Y on the transformed scale (and therefore biased
for Y on the original scale). The transformation is also presumed to result in well-behaved (e.g., normally distributed)
errors U.

We illustrate this approach with an example taken from data obtained in the OPEN study (for a short description of
the study, see the example given in Section 2.1). Here we consider estimating the distribution of usual sodium intake in a
population typical of those participating in the study. Besides the self-reported intakes (which have some bias), two mea-
surements of 24-hour urinary sodium were available, a biomarker for sodium intake that is thought to be unbiased, but
subject to random day-to-day variation and random assay error. Due to this random variation, these measurements (our
Y*) have error when the target is to measure usual (ie, long-term average) intake, Y. In addition, sodium intakes tend to
have a skew distribution that is approximately log-normal in shape. We therefore assume model (5) where g is the loga-

rithmic function. The value of the shrinkage factor ? shown in Equation (4) (but applied on the logarithmic scale)

oy+oy
was 0.72, indicating a relatively large day-to-day variation in sodium intake. Table 5 shows the percentiles of the distri-
bution estimated from a single biomarker measurement Y* assuming it has no random error (the incorrect assumption)
vs that based on model (5). The latter is calculated from applying the NRC method to the first measurement of log(Y*),
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TABLE 5 Estimated percentiles of the distribution of usual sodium Unadjusted NRC method

intake (mg/day) among a population typical of the participants in the Percentile method (mg/day) (mg/day)
OPEN study, using a single measurement of urinary sodium (unadjusted

method) vs the NRC method applied to the log value of this measurement 1810 2233

10 2150 2530

25 2879 3126

50 3948 3928

75 5322 4876

90 6649 5729

95 7686 6363
FIGURE 2 Smoothed estimated densities of usual sodium intake per day — Usal ke
among the OPEN study participants based on (i) a single 24-hour urinary Single Biomarker
sodium determination (single biomarker) and (ii) the NRC method of adjusting
for the measurement error in a single determination (usual intake) [Colour
figure can be viewed at wileyonlinelibrary.com]

0 5000 10000 15000
Sodium (mg)

estimating ai and af] from the repeat measurement, and followed by back-transformation. Figure 2 presents the density
functions after smoothing. Both Table 5 and Figure 2 show the substantial shrinkage of the distribution obtained when
using the adjustment for measurement error.

Later authors, beginning with Nusser et al’® assumed the model:

gY)=pu+U, (6)
where p is the individual's long-term average of the transformed Y*, and
Y = Ey(Y*|u) = Eu@ ' (u+ U)| ).

which assumes that Y* is unbiased for Y on the original scale. Because g(-) is typically nonlinear, estimating the distri-
bution of Y now requires integration over the distribution of U. It is often impossible to decide from the available data
which model, (5) or (6), is the more appropriate.

3.3 | Model-assisted vs model-based approaches

The NRC method uses the empirical distribution of ¥ as the basis for estimating the distribution of Y. However, the routine
use of normality transformations in later approaches>®->* permits the use of exact percentiles from a normal distribution
as the basis for estimation. In small samples, the empirical distribution of Y can be quite granular, leading to a granular
approximation of the distribution of Y. Using normal distribution percentiles allows smooth estimated distributions of
Y, but at the expense of relying on the normality assumption (after appropriate transformation). The NRC approach and
extensions such as the Multiple Source Method method** have been characterized as “model-assisted,” in contrast to the
other, “model-based” approaches.>
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3.4 | Extensions for inclusion of covariates, semicontinuous data, and multivariate
estimation

A more general version of model (6) is given by the mixed-effects model.
gY) =u@)+r+U, (7

where u(Z) is a function of observed covariates Z of an individual, r is a random effect that is constant across replicate
observations on the same subject, and U is random within-subject error. Then,

Y=EY*|r,Z)=Eg'(uZ) +r+U)|r2). ®)

Under (7-8), the variation in the distribution of Y comes in part from the variation explained by covariates Z and in
part from residual deviations r. Model (7) can be fit using standard software for (nonlinear) mixed models. The software
typically requires assuming normality of the random effects, which favors the use of model-based approaches. To maintain
the proper distribution of covariates, a Monte Carlo simulation approach is often used to generate a dataset for calculating
the empirical distribution mentioned earlier. In this approach, predictions of u(Z) from sampled individuals are added to
multiple randomly generated r values before integrating over the (presumed normal) errors U.

Many dietary components are “episodically consumed,” where the single-day reported intakes (Y*) can be zero, even
iflong-term intake (Y') is positive. The observed data Y* can therefore have a large proportion of zeros, as well as a skewed
distribution of positive values. In these situations, simple transformations applied to Y* will not even approximate a nor-
mal distribution. Models for such semicontinuous data are motivated by writing the average value of Y* as a conditional
expectation:

E(Y*) = E(Y*]Y* > 0) Pr(Y* > 0) + E(Y*|Y* = 0) Pr(Y* = 0) = E(Y*| Y* > 0) Pr(Y* > 0). (9)

This formulation expresses the average daily consumption as the product of the average consumption on consump-
tion days E(Y* | Y*>0) and the probability of consuming on a specific day Pr(Y*>0). This approach led several
authors®:333436.57 to consider models that used binary indicators of zero vs nonzero consumption Y* to inform estimation
of the probability part of the model and used the transformed nonzero values of Y* to inform estimation of the amount
part of the model. These methods were further extended (Freedman et al>® and Zhang et al*®) to allow flexible joint mod-
eling of multiple components, which permits analysis of ratios and high-dimensional indices. A detailed description of
these extended models is beyond the scope of this work.

3.5 | Nonparametric estimation of distribution functions

There is a very large literature on nonparametric estimation of distribution functions. The articles concentrate on estimat-
ing the density function, and this is often called density deconvolution. This literature has two major themes. The first uses
kernel density functions, while the second usually uses infinite mixtures of normal and/or Bsplines. For the first, see Car-
roll and Hall,® Stefanski and Carroll,%! and Fan,%? while for the case of heteroscedastic measurement error, see Delaigle
and Meister.%® For the second, see Staudenmayer et al® and Sarkar et al.'> For multivariate density deconvolution, see
Masry®® and Sarkar et al.®® The articles by Sarkar et al'>® are very general, allowing heteroscedastic measurement error
with unknown distributions for that measurement error, as well as of course unknown distributions for the latent variable.
There is substantial software available for these estimation methods. References to online sources of the available code,
which cover methods for kernel-based deconvolution and Bayesian semiparametric density deconvolution, are provided
in Table 6. Nonparametric maximum likelihood is another approach considered by several authors.57-68

4 | SOFTWARE FOR ANALYSIS

One of the main barriers in the past to the use of the analysis methods described in Sections 2 and 3 was the lack of
specific software for implementing them. The situation is now gradually improving. Here, we describe software programs,
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https://www.nal.usda.gov/sites/default/files/fnic_uploads//dietary_planning_full_report.pdf
https://www.nal.usda.gov/sites/default/files/fnic_uploads//dietary_planning_full_report.pdf
http://www.side.stat.iastate.edu/pc-side.php
https://mcra.rivm.nl/
https://epi.grants.cancer.gov/diet/usualintakes/macros.html
http://rivm.nl/en/Topics/S/SPADE/Access_to_SPADE
https://msm.dife.de/
https://researchers.ms.unimelb.edu.au/~aurored/links.html#Code
https://abhrastat.github.io/software.html
https://cran.r-project.org/web/packages/decon/decon.pdf

16 Wl LEY—Statistics SHAW ET AL.

macros, or packages that are now available for performing some of the methods described in those sections. Note that
software for performing RC and SIMEX was described in Part 1, Section 7. We also provide the code that conducted our
analyses of the OPEN data at https://github.com/PamelaShaw/STRATOS-TG4-Guidance- Paper.

4.1 | Software for Bayesian methods

Over the last several decades, the most common software used for applied Bayesian work has been BUGS.%*"! Fitting a
Bayesian model to data using BUGS involves specifying model and prior distributions within the BUGS language, and
then using both a BUGS interface and a BUGS engine to get the work done. In particular, the engine carries out MCMC
sampling of the posterior distribution of parameters and latent variables given observed data. The interface serves to
deliver the model and prior specifications and the data to the engine, and to then process the Monte Carlo output from the
engine into inferential quantities. While the BUGS language is unique, a common point of confusion is that there are mul-
tiple possible engines and interfaces. Commonly used engine/interface combinations include WinBUGS/R2WinBUGS™?
and JAGS/rjags.”® A worked example of implementation using R and JAGS is provided in supplementary materials to the
article of Bartlett and Keogh 2018.74

Generally, and for measurement error modeling specifically, using BUGS is intermediate between a completely
“do-it-yourself” workflow and a fully automated macro. The user need not have in-depth knowledge of MCMC
algorithms, that is, the user is not required to select, code, and tune a particular algorithm. However, the user
must express the chosen model and prior distributions in the BUGS language. On balance this seems a plus, as
these specifications are then much more customizable than would be the case with a fully automated macro hav-
ing a “hard-wired” model specification. Three specific examples of measurement error models expressed in the
BUGS language appear in sect. 9.3 of Lunn et al.”! Many problems could be approached by extending one of these
examples.

Regardless of how the workflow is implemented, and as alluded to in Section 2.2, using MCMC to compute point and
interval parameter estimates requires somewhat more scrutiny and oversight than with other statistical methods. Issues
of sampler “burn-in” and “mixing” arise, so that some level of human judgment is needed to assess whether the amount
of Monte Carlo sampling utilized is indeed sufficient to numerically approximate posterior quantities well. This process
is streamlined, but not automated, with the BUGS interfaces mentioned above. Simple summaries and diagnostic plots
are readily provided to attest to the trustworthiness of the computational output.

Recently, the Stan probabilistic programming language has been developed, along with an R interface.”” Com-
pared to BUGS engines, Stan makes use of rather different MCMC algorithms, with excellent performance reported
in many contexts. Chapter 11 of the Stan Reference Manual’® illustrates the coding of a measurement error model
in Stan.

One package that is specifically written for Bayesian analysis of measurement error problems in R is BayesME, avail-
able at http://www.stat.tamu.edu/~carroll/matlab_programs/software.php. This package is based on Sarkar et al'>!¢ and
deals with nonparametric density and regression estimation when the measurement error is heteroscedastic, unknown,
and may depend on X.

4.2 | Software for MR, MAI, and MI

When a validation substudy is available (Section 4.2), that is, in which the true X is observed, MI may be implemented
using standard MI packages. Available packages include mice,”” and smcfes in R,*” mi impute and smcfes in Stata,’® and
PROC MI in SAS. The smcfcs package in R has been extended to accommodate measurement error correction in the
settings of a validation substudy or a replicates substudy, and allows measurement error and missing data to be addressed
simultaneously.?’

No packages are available for the implementation of MR or MAI Thus, MR and MAI require a program to construct
the “predicted” values of X. However, from thereon those predicted values may be used in standard regression programs
to yield the measurement error adjusted estimates of the regression coefficients. Valid SEs of these estimates may then be
obtained by bootstrap methods.


https://github.com/PamelaShaw/STRATOS-TG4-Guidance-Paper
http://www.stat.tamu.edu/~carroll/matlab_programs/software.php
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4.3 | Software for estimating distributions

As mentioned in Section 3, several packages or macros are available for estimating the distribution of a variable Y, using
measurements Y* that have classical measurement error. Most, but not all, of these packages have been developed for
nutritional data but may be used for other types of data. All packages require that all individuals have at least one mea-
surement of Y* and that a substantial number have one or more repeat measurements. The user will note that some of
these programs deal not only with continuous Y* variables, but also with semicontinuous Y* that have a positive prob-
ability of a zero value. Nevertheless, most of them assume that Y is continuous even when Y* is semicontinuous, and
they yield an estimated continuous distribution. SEs are typically obtained via replication methods such as the bootstrap
(or under specific survey designs, balanced repeated replication). The packages and macros are summarized in Table 6.
The resources listed in Table 6 include software for methods relying on a variety of necessary assumptions, including the
semiparametric and nonparametric methods described in Section 3.5.

4.4 | Software for other methods

Section 2.1 includes some comments on what is needed to program likelihood methods. These methods are often imple-
mented though custom-built programs. Rabe-Hesketh et al” describe how to conduct maximum likelihood estimation in
Stata when X is normally distributed. In many problems of measurement error, the SAS procedures MIXED, NLMIXED,
and CALIS can be used, and were used for the NCI Method SAS macros (see Table 6). The SAS manual has a nice introduc-
tion illustrating how CALIS can be used for measurement error modeling (see: https://support.sas.com/documentation/
cdl/en/statug/63033/HTML/default/viewer.htm#statug_calis_sect001.htm), and the procedure can be used for nonlinear
modeling as well.

The R software package SIMEX, introduced in Part 1 for error in a continuous exposure, also includes the mcsimex
function, which implements the MC-SIMEX adaption for misclassified categorical exposures described in Section 2.5.80:8!
There is also a website that has R and Matlab programs (http://www.stat.tamu.edu/~carroll/matlab_programs/software.
php), to deal with measurement error that is a mixture of classical error and Berkson error, as often occurs in radiation
research and in other fields (see Section 5.1 for this topic).

5 | SPECIAL TOPICS

In Part 1 and in previous sections of this second part we have provided information regarding the effects of measurement
error and misclassification on estimates obtained from some standard analyses, how to adjust for these effects and the
software available to implement such adjustments. However, there is much that can be added to this basic information.
In this section, we present a few selected more advanced topics. The first two topics concern situations where the data are
affected by a mixture of types of errors. The third topic involves model building and variable selection in the presence of
measurement error, the fourth topic involves the design and analysis of studies whose main outcome variable is measured
with error, and the fifth topic involves categorization of continuous exposures that are measured with error.

5.1 | Analysis of data subject to both Berkson and classical measurement error

We focus on epidemiologic projects involving an exposure that is measured by two or more methods, some of which
involve Berkson errors and some classical-type measurement errors, which are then combined into a single measure.
This occurs for example in radon studies,?? and in radiation studies, such as at Hiroshima,?? the Nevada Test Site Thyroid
Disease Study,®*%> the Hanford Thyroid Disease Study,?-® and studies of the Chernobyl nuclear accident.?*°! There is
a similar literature in occupational epidemiology, where direct measurements of exposure are taken on individuals, but
other measurements of the same exposure are “grouped,” for example, the time spent in the location of the specific
exposure (eg, in a uranium mine), with an overall estimate of exposure at that location being derived from the combined
information. In environmental epidemiology, exposure to pollutants might be based partly on a spatial model of pollution
in that region and the amounts of time spent by the individual in different locations within the region, and partly on some
direct measurements taken from an individual.


https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_calis_sect001.htm
https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_calis_sect001.htm
http://www.stat.tamu.edu/~carroll/matlab_programs/software.php
http://www.stat.tamu.edu/~carroll/matlab_programs/software.php
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In all these types of problems, there is then a calculated dose X*, a true dose X that is unobserved, and exactly measured
covariates Z that are included in the outcome model and that are potentially related to X. We assume that, other than X,
the covariates in the outcome model are measured exactly.

Analysis of such data is based on the statistical idea of linking the direct and indirect measurements via some version
of a latent variable. Specifically, a latent intermediate variable, L links the true and calculated doses through a model such
as

X = L + Ugerk;
X* =L+ Uctas;
L=/(Z0)+e.

L can be hard to interpret; in some settings, it might be useful to think of L as an average underlying dose for a given
set of covariates. Here, Uk is the component of Berkson error with mean zero and variance aéerk, U casis classical error
with mean zero and variance aélas, f(Z,0) describes the relationship of L to the covariates Z, and ¢ is the remaining
variability not explained by the covariates or the measurement errors, with mean zero and variance 2. In the Nevada
Test Site example, X = the true radiation dose, X* = the derived radiation dose, which relied on participant characteristics
such as age, sex, and self-reported milk consumption; and we assume X and X* are related via a latent variable L, where
L may be a function of other precisely measured covariates Z determining exposure such as age, sex, distance from test
site, and so on. If Ugex has zero variance, then the above model is a purely classical measurement error model; if Ucjas
has zero variance then the above model is a purely Berkson model. Carroll et al'(PP193-19) provide more details on the
analysis of such joint models, giving examples of the use of RC (see also Reeves et al®? and Mallick et al3*) and maximum
likelihood. In practice, knowledge of the sizes of the measurement error variances aéerk and O-?Jlas is critical to analysis.
This can be particularly difficult for Berkson errors (see Part 1, Section 4.2). In case of such difficulty, sensitivity analyses
can be conducted.

The impact of a mixture of Berkson and classical errors depends critically on the ratio of Glzserk to G(leas' When this ratio
is very large and Berkson error dominates, the impact is close to that expected from purely Berkson error. When the ratio
is small, the impact is close to that expected from classical error; and when the ratio is near one, and the Berkson error
is nondifferential, then the impact is an average of the impacts of both—in other words estimated regression coefficients
are attenuated, although to a lesser degree than with purely classical error, and loss of power is similar to that found with
either classical error or Berkson error.

The literature given above includes a host of variations on the model given above, often specific to the application.
For example, Li et al®® consider the same model as above, but give reasons to allow the Berkson errors to be correlated
among groups of individuals. For the Chernobyl accident, Masiuk et al®! argue that a better model has classical additive
heteroscedastic measurement errors as well as Berkson multiplicative measurement errors.

5.2 | Analysis of exposure variables subject to both measurement error
and misclassification

In previous sections, we have described methods for dealing with two distinct cases: (i) a continuous variable measured
with error and (ii) a categorical variable subject to misclassification. What can be done, though, if data have a combination
of both?

The only work we are aware of that combines issues of measurement error and misclassification in a single analysis
is that of Spiegelman et al,’> White et al,> and Yi et al.** Each of these articles considers a main study/validation study
design, where the validation study includes both the true and the error-prone observations of the variables subject to mea-
surement error and misclassification, while the much larger main study has only the error-prone versions. In addition,
White et al®® considers a main study/replicates study design.

White et al®3 proposed a RC approach for a continuous outcome when there is both a continuous covariate and binary
covariate subject to measurement error, and discuss the necessary supportive data for an identifiable model depend-
ing on whether a validation study or replicate data are available. Spiegelman et al®? consider a binary outcome, and
use logistic regression with maximum likelihood to obtain estimates and inference. Yi et al** consider methods appli-
cable for all generalized linear models, with a binary covariate subject to misclassification and a continuous covariate
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measured with error. They discuss methods based on (i) full maximum likelihood, as in Spiegelman et al;’? (ii) an esti-
mating function method based on ideas of semiparametric methods such as in Tsiatis and Ma?> and Ma and Tsiatis;*®
(iii) an augmented RC method; and (iv) an augmented SIMEX method. Methods (ii)-(iv) aim at providing robustness to
distributional assumptions about the error-prone continuous variable.

Of methods (ii)-(iv), the augmented SIMEX method is easiest to describe. We denote by Xon: and X, the continuous
and categorical predictors subject to measurement error and misclassification, respectively. Their mismeasured versions
are X and X7 . The procedure is based on the idea that if Xcone Were observed, then one has a simple misclassification
problem, with X ,; misclassified, which can be solved by misclassification methods described in Section 2.5, for example
by positing a model for the misclassification distribution of X7, given Z, Xcont, and Xc,t. Then one applies ordinary SIMEX
to the method that would have been used if X, had been observed.”!

The augmented SIMEX and RC methods have the advantage that they are easily implemented using regular software

for SIMEX or RC, once one has computer code also for solving a misclassification problem.

5.3 | Variable selection when some covariates are measured with error

In many biomedical settings, one seeks to develop a parsimonious regression model from a set of candidate predictors.
We saw in Part 1, Section 3, that when there is at least one covariate in a multivariable regression model that is measured
with error, the estimated coefficients for that X and any other covariates can be subject to bias because of the underly-
ing correlation structures. Furthermore, as discussed in Part 1, Sections 3.1.3 and 3.2.3, when there are multiple such
error-prone or misclassified covariates in a regression model, the direction of the bias can be in either direction (towards
or away from the null). One way of viewing the cause of this bias in general linear regression is that measurement error
induces bias in the least squares estimating equation so that its expectation at the true parameter vector # is no longer
zero. Thus, many of the statistics used in variable selection procedures, such as the deviance or P-values associated with
regression coefficients, will also be biased. Consequently, measurement error in one or more covariates puts any model
selection procedure at added risk of selecting an incorrect set of variables and estimating regression coefficients with bias.
This is not a concern for prognostic modeling, where only the risk prediction is of interest; however, it is a concern when
one wishes to interpret the model coefficients or infer biological importance of the variables selected. Zhang et al®? also
remark that even when risk prediction is the sole interest, problems in model selection can occur when the measurement
error structure in the data used to develop the prediction model is different from that in the data used for prediction.

There are many modeling procedures used to perform variable selection. Some methods have been developed to
accommodate measurement error in variable selection and we highlight a few here. These methods have focused on
penalized regression approaches, which use a penalty function to effectively control the model dimension. Whereas con-
ventional stepwise procedures have been shown to be subject to instability and overfitting,®1%! penalized regression
procedures are becoming increasingly popular because of their better operating characteristics, particularly when there
is a large number of candidate predictors relative to the sample size.*>1°%192 Penalized regression methods typically add a
penalty to the usual parameter estimating equation (eg, the score), which then addresses both dimension reduction and
parameter estimation in a single step.

For linear and partially linear regression models, Liang and Li'%® develop a corrected score type approach in which a
term, proportional to fTvar(U)g, which offsets the bias caused by classical measurement error in the covariate vector X*,
is subtracted from the estimating equation to then achieve consistent estimation. Here var(U) is the measurement error
covariance matrix. To this end the authors propose minimizing the following adjusted least squares expression:

= X,Tp - vz - 2 Tvar(U)p, (10)
i=1

where v(Z;) is a general function of a precisely observed covariate Z, which is estimated with local splines. This adjusted
least squares expression is incorporated into a general penalized regression framework and the authors discuss choices
of the penalty, such as the Ly, L1, or the smoothly clipped absolute deviation penalty (SCAD), that provide a variable
selection framework. The authors show that under certain conditions, asymptotically, this procedure can perform as well
as if the true model were known. The method assumes that var(U) is either known or can be estimated from repeat
measurements of X*. These authors also develop a similar penalized quantile regression procedure, building on the work
of He and Liang!® who had developed a quantile regression to handle covariate measurement error.
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Ma and Li'% develop a more general penalized estimating variable selection approach that can be applied to both para-
metric and semiparametric measurement error models. Their method is applicable to any consistent estimating equation,
including generalized linear models, and can be applied to a large class of regression models.

Currently, we are not aware of any available software to implement the methods described above; however, software
for penalized regression methods is now widely available and could be used as a base for building the required software
for selection of error-prone variables.

In this section, we have highlighted only a few approaches in detail. Other approaches to address variable selection
in high dimensional data include Datta and Zou,'% Loh and Wainwright,'% Sorensen et al,'% Yang and Xia,'® Tian and
Xue,'19 and Wang et al.!'! Zhang et al®” discuss generally model selection in the setting linear regression models with
measurement error.

5.4 | Design and analysis when the outcome variable is measured with error

The effects of measurement error in outcome variables were outlined in Part 1, Section 3.3. Here, we discuss implica-
tions for study design and analysis and summarize methods for correcting for the effects of measurement error and
misclassification of the type that produces biased estimates.

5.41 | Classical error in a continuous outcome

Classical measurement error in a continuous outcome variable in a linear regression does not result in biased esti-
mates of regression coefficients (Part 1, Section 3.3.1). Therefore, a standard linear regression analysis can be used
without any alterations. However, classical error in a continuous outcome results in lower precision of estimated
regression coefficients and this should be accounted for in the study design. Consider the linear regression model
Y = fo+ pxX + ¢, where Y denotes the error-free outcome, and the corresponding linear regression model Y* = ﬂ(’)" +
B X + €* using the error-prone outcome Y*. The variance of the estimate is var(ﬁ;) = var(¢*)(XTX)~! and the relation-

ship between variances of estimates from models using Y and Y* is V:iigx ; = ‘%(Z)) Let ny denotes the sample size
var(px

required to achieve a desired SE for fx. To achieve the same SE for fy; therefore requires a sample size of ny%, where

var(e*) > var(e).

5.4.2 | Systematic error in a continuous outcome

When the outcome variable has linear measurement error (see model (2) in Part 1, Section 2.1), thatis Y* = ag + ayY + U,
where U has mean zero and is independent of Y, the unadjusted regression coefficients estimated using Y* = f; + f3X +

e* will be biased. Consistent estimates could be obtained by using % in place of Y*. This of course requires values
Y

for ay and ay, which may be known from previous studies or may need to be estimated. Buonaccorsi''>!!3 and Buonac-

corsi and Tosteson'!* devised methods for obtaining unbiased intervention effect estimates in this setting, when there is

available either a validation study or replicates of an unbiased measure (eg, a biomarker) in a substudy. These methods

were summarized by Carroll et al.1(**®15 First, consider the setting with a validation study available, in which Y (as well

as X) is observed. An estimate of fx can be obtained from the data in the validation subset, and we denote this by g

Ja
This estimate is consistent but clearly inefficient because it is based on only a subset of the data. A second estimate, 52,
Y -2,

Ay

and

can be obtained from a regression of

The variance-covariance matrix for ﬁ(XD

et al'laprendix Al and Keogh et al''®). Note that the variance for /;((1) and }2) will have increased uncertainty from the added
variability in U, as well as from the uncertainty in the estimated parameters @, and @y. Alternatively, bootstrapping can
be used. An efficient estimator of fx is then given by the “best weighted combination.”

on X, where @, and ay are estimates obtained from a regression of Y* on Y.

ﬁz), denoted X, can be obtained using a stacked estimating approach (Carroll

ﬁ\g — (JTZ_lj)_leZ_l(/;((l)T’ /§(2)T)T
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where J = (I, I) and I is the identity matrix with the same number of rows as there are elements of fx. The above result
is general and extends to regressions with multiple covariates having a vector of regression coefficients fx. In the simple
setting of a single covariate X, the efficient estimator is

)
oo, + By o0 ' )o(12)
X 2

el X @
s p
Oyt 05— 2012

s

) 2 p2) 2 ), A2
_ - ( + ﬂX
@

2

o7, 0

- @ (7%2)> is the variance-covariance matrix. This approach, based on a weighted combination of estimates,
12 %)

extends to the setting in which a replicates study is available instead of a validation study (see Part 1, Section 4.2). Sup-

pose that two repeats of an unbiased measurement (eg, biomarkers) Y;* =Y + U, and Y;* =Y + U, with U; and U,

where X = <

independent, are available for a subset of individuals. A consistent estimate of fix, again denoted /;((1), can be estimated
in the replicates substudy from a regression of (Y;* + Y;*)/2 on X. The parameters ap and ay can be estimated in the
replicates substudy using an MOM approach (Carroll et a]!lsect15]),

If the values of parameters ay and ay are not known from a previous study, the need to estimate them should be accom-
modated at the design stage by incorporating plans and resources to conduct a validation or replicates substudy. Further
research is needed to establish methods for optimal design of such studies, including the incorporation of information on
the relative cost of the systematic-error-prone and biomarker measures.

5.4.3 | Differential error in a continuous outcome

In some studies, the outcome measure is prone to differential error. This can arise in intervention studies with a
self-reported outcome when participants are aware of their intervention group. We consider a measurement error model
of the form Y* = agx + ayxY + U for two groups X = 0 and 1. This is a generalization of the linear measurement error
model considered above. Differential error gives rise to biased estimates of the intervention effect; additional informa-
tion is needed to estimate the form of the differential error so as to obtain consistent estimates of the intervention
effect. Keogh et al'’> described methods for analysis in the setting of dietary intervention trials in which the main
differential-error-prone outcome measure is from a self-report and unbiased biomarkers are available in a replicates sub-
study, based on the Buonaccorsi!'? approach outlined above. The Buonaccorsi method extends directly to the differential

error setting, with /}2) being based on a regression of Ya_—a‘”‘ on X. In particular, Keogh et al''> investigated the contri-
YX
2

bution of ,[/i;((
theoretically that in the case of nondifferential error the combined estimator will be more precise than A}({l) , while in the
case of differential error nearly all the information about the intervention effect comes from the validation or replicates
study and that /;((2) adds little in large samples. However, via simulation studies Keogh et al''> found that in finite samples,
it is advantageous to use the self-report data in addition to the replicate biomarkers to estimate the intervention effect
when the reliability of self-report measurements is comparable to that of the biomarker.

) to the estimator ﬁg (the weighted combination of /}(1) and ﬁ(XZ)) under different assumptions. It was shown

5.4.4 | Misclassification of a binary outcome

Section 2.5 noted that “matrix methods” can be used for handling a misclassified binary exposure when the outcome is
also binary. Matrix methods can also be applied directly when instead it is the outcome that is misclassified, but they
work only in very simple settings. Binary outcomes are more typically analyzed using logistic regression, and methods
for correcting the impact of outcome misclassification in logistic regression analysis have also been devised.

For a study of n individuals, the full likelihood can be written:

n 1

n
L=]]Prv* =yj1x =x) =[] D Pr(Y =y|X = x) Pr(Y* =y} | ¥ =y.X =), (11)

i=1 i=1 y=0

where the logistic model of interest is logit(Pr(Y = 11 X = x;)) = fo + fxx;. The misclassification probabilities in the sec-
ond term of the likelihood, Pr(Y* =y} | Y =y, X = x;), can be expressed in terms of Pr(Y = yl X = x;) and the sensitivity
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(Sn) and specificity (Sp) of Y*. Magder and Hughes!'® described estimation of g, and fx using an EM algorithm. They
described approaches for when the sensitivity and specificity are known, when they can be estimated from a previous val-
idation study, and when they need to be estimated from the data. In the last situation, there are issues of identifiability if
the model is saturated, and smoothing assumptions concerning the relation between covariates and outcome are needed
to proceed. The authors caution against using this approach unless the smoothing assumptions are strongly believed. The
probabilities of Y =y given Y* and X are estimated in the E-step, and the logistic regression parameters f, and fx are esti-
mated in the M-step. Neuhaus,''7 Lyles and Lin,'!® and Lyles et al'!® instead used direct maximum likelihood estimation
based on (11). They used the result that for the case of nondifferential misclassification, the likelihood can be expressed
in terms of Sn and Sp, as follows:

{SpPr(Y =0|X =x)+ (1 —Sn) Pr(Y = 1|X = x)}' ¥ (12)

L ﬁ {(1 = Sp)Pr(Y = 0|X =x;) + Sn Pr(Y = 1|X = x;) ¥ x
i=1

They considered sensitivity analyses assuming particular values for Sn and Sp, and making use of internal or external
validation data. SAS code was provided.

A number of other authors have also considered sensitivity analyses for investigating the impact of outcome mis-
classification, incorporating uncertainty in the specified values for sensitivities and specificities. Fox et al'?° described
probabilistic sensitivity analyses that involve simulating the data that would have been observed if there were no mis-
classification, given sensitivities and specificities. They focused on misclassified exposures but noted that the methods
could also be applied for a misclassified outcome. Lyles and Lin!'!® described a “predictive value weighting” for han-
dling misclassified exposures, which can also be applied for misclassified outcomes, and in the more complex scenario of
misclassification in both outcome and exposures. This has been implemented in the pvw module in Stata.'?!

Edwards et al'?? applied MI to handle misclassified outcome data when there is an internal validation study. A
Bayesian approach can also be taken by assigning priors to the sensitivity and specificity. Some special considerations are
needed when Y represents case or control status in a case-control study.!16:11%:123

5.5 | Misclassification due to categorizing continuous exposures measured with error

We have presented in Sections 2.2 and 3.2 of Part 1, and in Section 2.5 of this second part, problems arising from and
methods for dealing with misclassified categorical variables. In this section, we discuss the special case where the categor-
ical variable has been formed by categorizing an observed continuous variable. Despite the resulting loss of information,
in epidemiologic analyses, continuous exposure variables are often categorized using either prespecified cut-points or
estimated quantiles of the variable's distribution. Flegal et al'** published a key result showing that dichotomization of a
continuous exposure that is subject to nondifferential measurement error leads to a binary exposure that has differential
misclassification. Later work of Brenner and Blettner!?® and Delpizzo and Borghes!?® also stress this point. Although dif-
ferential measurement error and misclassification may, in general, lead to bias in the estimated regression coefficient in
any direction (see Part 1, Section 3), the simulations of Flegal et al'>* demonstrated relative risk (RR) estimates that were
attenuated. These simulations were based on a univariate linear logistic regression with a continuous exposure X prone
to classical measurement error and dichotomization using a prespecified cut-point.

Considering the same assumptions regarding the exposure X, Gustafson and Le!'?” extended the results of Flegal et al.
First, they provided analytic expressions for linear regression in addition to numerical results for linear logistic regression.
Second, they considered the effect of changing the prespecified cut-point c. Third, they considered the inclusion of a
second precisely measured continuous covariate Z in the regression and the effect of correlation p between X and Z.
Finally, they considered situations where the true regression of the outcome Y was linear in Z and a weighted average of
the continuous and dichotomized X, that is,

EY|X,2)=p+h{d-o)X+olX >0} + pZ (13)

This form of regression allowed a more general investigation of the effects of covariate dichotomization, that is, it
considers the situation where the truth lies somewhere “in between” the extremes of dichotomization leading to a com-
pletely right model specification vs a completely wrong model specification. Their results demonstrated that, when the
true regression contains a linear exposure on the continuous scale (w < 1), it can be beneficial to dichotomize imprecise
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continuous exposures, as this can reduce bias from the analysis on the continuous scale. For example, in the case of the
linear regression (with @ = 0),

E(Y | X,Z) = fo+ HX + bz, (14)

where X~N(0, 1), X ~N(0, 1 +var(U)), Z~N(0, 1), and p = cor(X, Z), the multiplicative biases in the estimated regression
coefficients arising in the analysis with continuous X* and categorized W* = I(X* > c) are given by, respectively,

px: _ 1 P _ g { R(©) = *4(©) } as)

= and =
I/ 1+var(U)/(1 - p?) frw R(Oc) — p*0¢(Oc)

where 6 = . =, R(c) = 20120}

W 2 and ¢(.), @(.) are the probability density and cumulative probability functions of

the standard normal distribution. Some values of var(U), p and c lead to LA ﬂ;—"". Gustafson and Le'?’

point out that
no general statements can be made about how the bias due to dichotomizatli%n deplends on the choice of threshold or the
strength of correlation between predictors. The authors produce several graphs of attenuations comparing continuous
and dichotomized observed main exposure for 0 <var(U)"?2<1.2,c¢=1,2,3,and p =0, 0.3, 0.6, 0.9. In all those cases,
attenuation was greater in the continuous case, that is, buwe S P However, this inequality also depends on the nature

of the underlying relationship between the outcome Varligble and the exposure. In situations where the dichotomized
true exposure (w = 1) produces a better fitting model, the bias in its regression coefficient tends to be larger than that in
the coefficient of the continuous exposure, unless var(U) gets close to or exceeds the var(X). In general, it is important
to remember that dichotomizing a continuous exposure loses information when the relationship between the outcome
variable and the exposure is truly continuous, and changes the interpretation of the corresponding regression coefficient.
Thus, even in situations where dichotomization does reduce bias in the estimated regression coefficient, this advantage
could be outweighed by loss of information and/or degradation of model fit.

Recently Keogh et al'?® investigated several methods of adjusting for misclassification due to dichotomizing a contin-
uous error-prone predictor. In contrast to previous work, a measured continuous exposure was specified to follow a linear
measurement error model, thereby allowing for systematic error. In addition to methods using estimated misclassification
probabilities, the authors considered applying two RC-based methods, MI and MR to the continuous exposure followed
by dichotomization, and also a SIMEX method. Simulation studies were used to compare the methods when either the
true exposure or reference measurements with classical error were available in a validation subsample. The underlying
relationship between the continuous exposure and the outcome in the simulations was a univariate linear logistic regres-
sion, and dichotomization was based on a predefined cutpoint. In that study, RC and SIMEX methods failed to correct
adequately for bias because both methods assume nondifferential error (the failure of RC was also confirmed by Dalen
et al'?®). However, MI and MR performed well. Methods using estimated misclassification probabilities also performed
well, provided differential misclassification was assumed (see also Dalen et al'®°). It is important to note that the latter
methods are restricted to estimating ORs, while MI and MR could, in principle, be used with different regression models,
with quantile-based categorization, and could also accommodate covariate adjustment. Extending MI and MR to those
cases as well as to the case of regression of the outcome on a nonlinear function of the exposure remains an important
area for further research.

6 | EXTERNAL,IMPERFECT OR MISSING REFERENCE INSTRUMENTS

While Part 1 and earlier sections of this article have made it clear that both theory and software are available for handling
errors in measurement or classification of variables, ultimately their use hinges on the knowledge and data available
regarding the measurement error or misclassification model that relates the imperfect observed exposure X* to the true
value X. Unfortunately, all too often, information about the error model is incomplete or missing. In this section, we
describe how one might approach the problem of measurement error or misclassification when there is lack of knowledge
about such a model.

The ideal setting for applying methods to address measurement error or misclassification of variables is one in which
an internal validation study has been done, which would directly relate the imperfect observed exposure or outcome to
its true value in the population of interest. We consider analysis options when such a validation study is not available.
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In this case, there may be data from another cohort, namely an external validation study, or there may be an imperfect
reference instrument that can provide partial information about the nature of the measurement error. We also discuss
approaches for settings where there is little to no information available regarding the error-prone data.

6.1 | Using an external validation study

Internal validation studies are the ideal because their data can be used directly with all the methods of measurement error
analysis described previously. In their absence, external studies can be used to specify the measurement error model (or
its associated RC model) in the external data and to estimate its parameters. However, the use of this external study data in
the analysis of the primary study is then reliant on the assumption of transportability for the model of X*|X,Z (see also Part
1, Section 4.2). Transportability means that the specified model relating the error prone X* with the true data (X,Z2) holds
with the same parameter values in both studies, and that the relevant parameter estimates and their SEs obtained in the
external study can be used without bias in analysis of the primary study. See, for example, Guo et al'*! who provide a MI
method that addresses covariate measurement error in a regression model using information from an external validation
study that provided information regarding only the covariate error, without measurement of the outcome or other study
variables. Further discussion of this article appears in Liao et al.!3> Buonaccorsi? also provides some discussion of error
correction methods that rely on external data. In this case, also assuming nondifferential error, one can use the external
data to inform the RC approach, as described in Part 1, Section 6.1; however, the calculation of the SEs would need to be
different, particularly if the original external data were not available.

The assumption of transportability may be reasonable if external independent data come from a similar population
with measurements obtained with the same or a very similar instrument. Consider, for example, a nutritional study with
dietary intake measured by a FFQ. If the external validation study provides independent data from the same population
with the same FFQ plus a reference instrument, the error model that is estimated in the validation study could be assumed
transportable to the primary study and used for adjusting its results for measurement error. If, however, the same FFQ
is used in a somewhat different population, or a different version of FFQ is used in that population, the transportability
assumption may not be fully justified.

A different example of possible problems with transportability includes the situation when the distribution of X*
given (X, Z), the measurement error model, is the same in both primary and external studies, but the distributions of
true exposure X given Z are different. Since by Bayes' theorem the regression of X given (X*, Z) depends on both of these
distributions, the RC model is not transportable. Carroll et al'®*®*225) give an example of this phenomenon related to
blood pressure measurement.

Since adopting the correct error model is critical for an appropriate adjustment for measurement error, whenever
there is doubt about the transportability of an external validation study, it is advisable to conduct a sensitivity analysis by
considering some possible variation in the relevant error parameters and their effect on the results of the primary study.
Thus, while external validation studies can undoubtedly provide worthwhile information about the measurement error,
they often do not entirely exempt the investigator from conducting a sensitivity analysis. However, in comparison to the
situations in Sections 6.2 and 6.3 that follow, where there is less information regarding the measurement error, in the case
of external validation studies, the sensitivity analysis could involve a more restricted range of parameter values.

6.2 | Methods that use an imperfect reference instrument

Often, exposures in epidemiological studies are known to be measured with substantial error, but the corresponding
measurement error model is not known due to absence of appropriate reference instruments. Typical examples include
most dietary exposures (see Part 1, Section 4.3.1) and characteristics of physical activity such as measures of moderate to
vigorous activity (see Part 1, Section 4.3.2). In some such cases, an instrument less biased than the main study instrument,
but nevertheless biased, is used as the reference instrument (calibration study with imperfect reference instrument).
Examples in nutrition and physical activity studies are given in Part 1, Sections 4.3.1 and 4.3.2.

As mentioned later in Section 6.3, in the absence of knowledge of the measurement error model, a bias or sensitivity
analysis is recommended using a plausible set of parameters (or their distribution) for the model. When the measurement
error model is estimated using an imperfect reference, sensitivity analysis is also recommended. Although the error model
parameters are imperfectly estimated, they may nevertheless be used together with supplementary information to choose
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the range of parameters for the sensitivity analysis. Thiébaut et al*3* provided a good example of this approach. They
reported the estimated RR for breast cancer associated with a 2-fold increase in fat density (percent of total energy provided
by fat). In the Results section, they first report the unadjusted RR estimate of 1.15 (95% CI 1.05-1.26) based on FFQ data.
They then report the RR adjusted for measurement error based on a 24-hour recall (imperfect) reference validation study:
1.32 (95% CI 1.11-1.58). Finally, in the Discussion section, they use data from the OPEN validation study’ to adjust for
the bias that may have occurred due to use of an imperfect reference instrument for fat density. The adjustment for bias
is calculated by comparing attenuation factors based on the imperfect reference (24-hour recall) with that based on the
perfect reference (recovery biomarkers) for protein density that has a recovery biomarker, and transporting the ratios of
these estimates to the case of fat density, which does not have a recovery biomarker. This procedure, which was justified
by the substantial correlation between protein and fat intake, gave an estimated RR of 1.46 (no confidence limits for this
estimate were provided). Although they did not perform a formal sensitivity analysis in the last analysis, it is clear that
their approach was moving in that direction.

This example includes the elements of how a sensitivity analysis may be constructed from knowledge of measurement
error in exposures similar to that being considered. For exposure X (eg, fat intake), the measured exposure X* (using
instrument I, for example, an FFQ) is compared to an imperfect reference instrument Xﬂ;p (using instrument Iy, for
example, a 24-hour recall) to obtain an estimated measurement error model M*. For some similar exposure X; (eg, protein
intake), information is available on the measured exposure X;" (using instrument I, the FFQ), its imperfect reference
instrumentX;‘ffmp (using instrument I, the 24-hour recall), and also an unbiased reference measurement X, (eg, 24-hour
urinary nitrogen excretion). The availability of both the imperfect reference measurement and an unbiased reference
measurement for X; enables one to learn about the relationship between the true measurement error model M; estimated
using measurement X and the model M;* estimated using the imperfect reference measure Xi‘”{mp. This information
about M; vs M;* is then applied to the estimated measurement error model M* for the exposure of real interest X, to yield
the desired range of parameters for the true measurement error model M for measured exposure X*.

In this approach, the choice of the “similar” exposure X; will, of course, depend on the context. For dietary intakes, it
will be the intake of another dietary component, one that has an unbiased reference measurement; for physical activity
measures such as moderate or vigorous activity measured by a physical activity diary and compared to an accelerometer
reference, it could be total energy expenditure that can be measured unbiasedly by doubly labeled water.

A different approach to dealing with studies using imperfect reference instruments starts with the question of whether
using an imperfect reference instrument to adjust for measurement error is preferable to making no adjustment whatso-
ever. In other words, if one uses an imperfect reference to estimate the measurement error model and then uses this model
to adjust risk parameter estimates in the health outcome model, would these adjusted estimates, even if biased, still have
less bias than unadjusted ones? If that could be demonstrated, it could motivate the use of these imperfectly adjusted esti-
mates in preference to the unadjusted ones. This approach is less demanding than conducting a sensitivity analysis, since
it involves applying the measurement error adjustment for just one measurement error model, but it is also less complete.

The issue has been studied in nutritional epidemiology. Freedman et al'** published the results of analyzing such a
question using data from the OPEN study, and more recently updated their results using data from the five validation stud-
iesincluded in the Validation Studies Pooling Project.!*> They concluded that, on average, 24-hour recall-based calibration
of a FFQ reduced, but did not eliminate, the bias in the risk estimates in multivariate risk models that included energy,
and protein, potassium and sodium intake densities, in comparison with unadjusted estimates. Although those results,
as well as similar results using linear measurement error models in the sensitivity analysis conducted by Buonaccorsi
et al,!3 indicate that using a 24-hour recall as a reference instrument to adjust for measurement error would improve the
analysis of studies in nutritional epidemiology, there remain some doubts. The improvement has been demonstrated in
only a handful of nutrients (those which have unbiased biomarkers), and may not transfer to all other dietary components,
especially episodically consumed dietary components, for which the measurement error model is highly nonlinear.!3’

A general limitation of this approach is that even if the resulting estimates are less biased than unadjusted estimates,
they are nevertheless biased. Therefore, presenting them as the best estimates available does not reveal the full extent of
the underlying uncertainty, and is a less complete approach than conducting a sensitivity analysis.

6.3 | Approaches when there is no reference instrument

If we have no knowledge about the measurement error model, then we have to make assumptions about it. Note that
ignoring measurement error is one (incorrect) assumption, which is akin to assuming there was no error in measurement.
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In this section, we outline alternatives to this naive approach. Investigations can still be undertaken to understand the
potential impact of measurement error or misclassification on study results. This approach involves three steps. First,
a measurement error model is posited. Second, study results are produced that are corrected for measurement error,
under the assumed measurement error model. This may involve direct reanalysis of the data, or post hoc adjustment
of estimated outcome model parameters. Finally, assumptions about the parameters in the assumed error model are
typically varied in a sensitivity analysis to examine the robustness of study results to a range of assumptions about the
measurement error.

Bias analysis, sometimes also referred to as uncertainty analysis or probabilistic sensitivity analysis, follows the above
general approach for quantifying the potential effects of measurement error. This method focuses on sources of systematic
and random error. Bias analyses have several goals: (i) to estimate the direction and magnitude of the bias in study results
induced by the errors in the data, (ii) to make explicit the sources of suspected errors and the degree of uncertainty that
they introduce into study results, and (iii) to efficiently guide future research by elucidating what associations are sensitive
to the underlying amount of measurement error or misclassification and would best benefit from future replicates or
validation studies to estimate that error. 13

Methods for bias analyses are well established in the statistical and epidemiologic literature and apply to estimating
the impact of sources of bias that go beyond just measurement error, such as unmeasured confounding or nonignorable
dropout (Lash et al,'3® Greenland et al,'3° Greenland,'*° Fox and Lash,'#! Fox,'#> MacLehose et al,'*? Lash and Ahern'#).
A fundamental step of bias analysis is to thoroughly review the study's subject selection and retention, methods of data col-
lection, and other opportunities for confounding, selection bias, and measurement error.!3® Once those potential sources
of bias have been identified, mathematical models are developed for the relationship between the underlying true data
with biases removed and the study data. For this endeavor, distributions rather than a single set of parameter values are
used to generate a sensitivity analysis for the results of the bias analysis. In the absence of any validation data or other
studies to inform the selection of parameters, educated guesses can be used to posit such relationships.!*? In this last
step, one option is to assign a prior distribution from which to draw the necessary error parameters, which allows for
a Bayesian analysis that naturally integrates the uncertainties coming from the submodels for exposure, outcome, and
measurement. Choice of this prior in the absence of validation studies could similarly be informed by expert option, as
discussed in Section 2.2. Lash et al'*® provide a review of best practices for bias analysis. One challenge to this approach
is its reliance on proper specification of the mathematical form of the measurement error, such as additive or multiplica-
tive. This choice is likely best informed by validation data but could also be made part of the sensitivity analysis in the
absence of such data.

A practical example of bias analysis can be seen in the study by Jurek et al,'*> who sought to quantify the impact
that exposure misclassification may have had on a study by Ross et al'#¢ reporting on the effect of maternal supplement
use on the risk of leukemia in children with Down syndrome. Because of a lack of an internal validation study, Jurek
et al'* developed their misclassification models and parameter distributions from a mixture of expert opinion, a liter-
ature review of validation studies of similar exposure instruments, and limitations set by the data themselves. Using
several error model scenarios, including both differential and nondifferential misclassification and a formula to adjust
the estimated OR for the underlying exposure misclassification, they conducted a sensitivity analysis for the induced bias.
Their bias analyses revealed that data that were corrected for the reporting bias in supplement use generally yielded a
stronger protective effect than the naive analysis that ignored the misclassification. The uncertainty was increased in all
scenarios.

He et al'¥” provided an alternative approach for examining the potential effects of measurement error. These authors
considered an accelerated failure time model for mortality in the Bussleton Health Study cohort that included two
error-prone covariates, serum cholesterol and systolic blood pressure (SBP), as well as other assumed precise covariates.
The errors in cholesterol and blood pressure were assumed to be independent and to follow the classical measurement
error. Lacking a replicates substudy, the authors considered several possibilities for the size of the underlying measure-
ment error variance and applied a SIMEX approach to re-estimate the regression parameters for each value of the assumed
measurement error variance. With this exercise, the authors were able to conclude that even under small to moderate
classical measurement error, the factors determining mortality remained the same, with the most uncertainty about the
magnitude of the effect of SBP. Such analyses motivate future replicates studies to gather multiple measures of SBP in
similar settings to better understand the magnitude of the measurement error variance and the relationship of SBP to
mortality. The decreased sensitivity of results to the measurement error in cholesterol suggest that for this exposure such
studies may be of secondary importance to that for SBP.
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7 | CONCLUSION

In this two-part tutorial, we have presented basic information needed to understand the impact of measurement error
and misclassification on results of epidemiological research studies, and methods available to adjust for such error. In
Part 2, we have also presented some more advanced methods to address covariate and outcome measurement error, but
our review is not exhaustive. Some notable methods not considered here include conditional score and corrected score
methods to address covariate error. For density estimation, there is also only minimal detail regarding deconvolution
kernel estimators and other nonparametric density estimation methods. The reader is referred to some recent textbooks
(Carroll et al,! Buonaccorsi,? Yi,> Gustafson,!?) for introductions to these and other methods not considered.

Our impression is that the problem of measurement error and misclassification is being seriously neglected in the
design of many epidemiologic studies and in the presentation of their results.!*314% Barriers to satisfactory handling of
such problems include lack of validation studies required to quantify the amount and type of error, lack of appreciation
and understanding of the effects of such error, and lack of knowledge of the methods and software required to adjust for
these effects. Publication of this article is part of a wider effort by our STRATOS Topic Group to bring these problems to
the attention of the biostatistical and epidemiologic communities; and on a broader perspective, our work on publishing
this guidance article is part of the general aim of STRATOS to strengthen the analytic thinking underlying observational
studies.!®®
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