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ORIGINAL ARTICLE

Abstract: To make informed policy recommendations from observa-
tional panel data, researchers must consider the effects of confounding 
and temporal variability in outcome variables. Difference-in-differ-
ence methods allow for estimation of treatment effects under the 
parallel trends assumption. To justify this assumption, methods for 
matching based on covariates, outcome levels, and outcome trends—
such as the synthetic control approach—have been proposed. While 
these tools can reduce bias and variability in some settings, we show 
that certain applications can introduce regression to the mean (RTM) 
bias into estimates of the treatment effect. Through simulations, we 
show RTM bias can lead to inflated type I error rates and bias toward 
the null in typical policy evaluation settings. We develop a novel cor-
rection for RTM bias that allows for valid inference and show how 
this correction can be used in a sensitivity analysis. We apply our 
proposed sensitivity analysis to reanalyze data concerning the effects 
of California’s Proposition 99, a large-scale tobacco control program, 
on statewide smoking rates.

Keywords: Regression to the mean; Difference-in-difference; 
Matching; Sensitivity analysis; Synthetic control

(Epidemiology 2020;31: 815–822)

Panel studies are a type of longitudinal study that can be used 
to estimate the effect of an intervention on an outcome of in-

terest by comparing outcome measurements collected pre- and 
posttreatment. Because treatment is not typically randomized, 

differences in outcomes cannot be attributed to intervention 
alone. If we consider the effect of a smoking cessation pro-
gram on cigarette sales within a state, then state demographics, 
which may influence the likelihood of a cessation program 
being passed, can also effect sales trends. Additionally, tem-
poral variation and outside events (such as natural disasters) can 
add noise to trends and affect estimates of the treatment effect. 
These features can occasionally create the illusion of a treat-
ment effect where none exists. Given a set of treated and con-
trol units with outcomes measured pre- and postintervention, 
the difference-in-difference estimator is the difference in pre-
treatment outcomes between the two units subtracted from the 
difference in posttreatment outcomes.5 Under the assumption 
that the treated and control groups would have parallel outcome 
trends in the absence of treatment, this estimator is unbiased 
for the average treatment effect on the treated (ATT). Ease of 
use and robustness to unmeasured confounding has made the 
difference-in-difference approach popular among epidemi-
ologists.10,19,21 However, because the estimator is not robust to 
deviations from the parallel trends assumption, control units 
must be selected with care.

To improve the selection of controls, Abadie1 introduced 
the synthetic control approach. The method constructs a “syn-
thetic control” unit using a weighted sum of donor controls. If 
donors are weighted such that they resemble the treated unit 
in the preintervention period, then the synthetic control should 
emulate how the treated unit would behave in the postinterven-
tion period in the absence of treatment. This is akin to match-
ing, in that control units that are similar to the treated unit are 
weighted more heavily than those that are not. While matching 
may improve comparability between treated and control units, 
recent work by Daw and Hatfield12 has shown that matching 
in difference-in-difference analyses can introduce regression 
to the mean (RTM) bias. Because of the similarities between 
matching and the synthetic control method, there is a need 
to better understand the effects of RTM when using syn-
thetic control. In this article, we examine the effect of RTM 
on estimates of the ATT coming from the synthetic control 
and other matched difference-in-difference methods. Through 
simulations, we show that RTM can result in inflated type I 
error rates and, in some settings, decreased power. Compared 

ISSN: 1044-3983/20/3106-0815
DOI: 10.1097/EDE.0000000000001252

Impact of Regression to the Mean on the Synthetic 
Control Method

Bias and Sensitivity Analysis

Nicholas A. Illenberger,a Dylan S. Small,b and Pamela A. Shawa

LWW

http://links.lww.com/EDE/B721
www.epidem.com
mailto:nillen@pennmedicine.upenn.edu


Copyright © 2020 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

Illenberger et al.	 Epidemiology  •  Volume 31, Number 6, November 2020

816  |  www.epidem.com	 © 2020 Wolters Kluwer Health, Inc. All rights reserved.

with other matching techniques, these effects are exaggerated 
in the synthetic control estimator. We also propose a novel 
sensitivity analysis, which can be used to check how robust 
inference may be to the effect of RTM bias. Sensitivity and 
quantitative bias analyses allow researchers to assess the po-
tential effects of systematic error in an experiment23 and are 
common in causal inference and missing data settings.24 We 
apply our proposed sensitivity analysis to reanalyze data from 
Abadie et al,2 estimating the effect of a large-scale tobacco 
control initiative on smoking sales in California. The data are 
from a publicly available dataset on state-level annual ciga-
rette sales and are not subject to human subjects review.3

METHODS

Matched Difference-in-Difference
Consider a setting where observations are measured pre-

intervention, t = 0, and postintervention, t = 1. Let Y (t) represent 
the observed outcome at time t, A be an indicator of treatment 
status, and X be measure or unmeasured confounders. Define 
Y a(t) to be the potential outcome25 which would be observed 
under treatment A = a at time t. In this setting, Y 1(0) = Y  0(0) 
because neither group receives treatment at time t = 0. Assume 
the linear model, E[Y  0(t)|X] = βX + γt, for the expected potential 
outcome under no treatment at time t. Because the distribution 
of X typically differs between the treatment groups, the potential 
mean under no treatment will differ as well. This model assumes 
that the effect of time, γ, does not depend on confounders and 
that the effect of confounders, β, does not depend on time. These 
are jointly known as the parallel trends assumption. If both are 
true and if the distribution of covariates within each group re-
mains the same over time, then the expected difference between 
the potential untreated outcomes for the treated and control units 
in the pretreatment period is equivalent to that in the posttreat-
ment period. Let D(t) be the expected difference between the 
treatment and control groups at time t. If, alongside the parallel 
trends assumption, we also assume consistency (YA(t) = Y(t)) and 
random treatment conditional on X (Y  0(t)╨  A|X  ), then we can 
show (see Appendix A):
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For t = 1, the first term in this summation is the ATT, 
which we define as θ. Because Y 1(0) = Y 0(0), it follows that θ 
is the difference between D(1) and D(0). A natural estimator 
of θ uses the empirical means within treatment groups at times 
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In practice, it may be difficult to identify units such  
that β and γ are equivalent in the treated and control groups. 

Ryan et al26 have shown that matching can decrease bias by 
improving the comparability of units. They consider the case 
where treated and control units are drawn from the same un-
derlying population, but the probability of treatment depends 
on preintervention outcome levels or trend. In this setting, if 
preintervention outcomes are correlated with future observa-
tions, then matched difference-in-difference estimators of the 
ATT are less biased than their unmatched counterparts. How-
ever, as we will discuss, if treated and control units are pulled 
from populations with different outcome distributions, then 
matching can induce RTM bias into estimates of the ATT.

Regression to the Mean
Regression to the mean (RTM) is a statistical phenom-

enon in which extreme measurements of a random variable 
tend toward their expected value upon repeat measurement. 
Bias due to RTM is introduced when three conditions hold: 
(1) there is variability in outcome measures, (2) the population 
from which the treated unit is drawn differs from the control 
population, and (3) matching is done on pretreatment outcome 
levels. For example, suppose pretreatment outcome measure-
ments are obtained from control and treatment populations 
with mean outcome levels µ0 and µ1, respectively. If µ1 > µ0, 
then the nearest-neighbor match for a treated unit is expected 
to be a control unit with outcome greater than µ0. Because this 
control unit is expected to decrease upon repeat measurement 
in the posttreatment period (i.e., regress toward its mean), the 
differences in outcome levels between treated and matched 
control units are expected to be larger in the posttreatment 
period than in the pretreatment period even when there is no 
treatment effect. In this setting, matching results in a violation 
of the parallel trends assumption, leading to bias.

Matching Procedures
Synthetic Control Method

The method of synthetic controls is provided in detail 
elsewhere,2 and so we provide only a brief overview. Suppose 
we collect data on a single treated unit and n0 controls for a 
total of n0 + 1 units. Let i = 1 index the treated unit and C denote 
the set of indices for the control units. Collect τ outcome mea-
surements Yi = (Yi1, . . . Yiτ) on each unit. Treatment is withheld 
until time τ0, such that j ∈ {1, . . ., τ0} denote the pretreatment 
period and j ∈ {τ0 + 1, . . ., τ} compose the posttreatment 
period. Select wk, for k ∈ C such that Y w Yj k kjk c1 ≈

∈∑  for  
j ∈ {1, . . ., τ0} and wkk c

=
∈∑ 1. If weights are chosen so that 

these equalities approximately hold, then the weighted sum of 
the posttreatment control vectors can serve as a potential un-
treated outcome vector for the treated unit.

Nearest-Neighbor Matching
Let S be the set of pretreatment outcome measurements 

from the control group. If s are pretreatment measures for the 
treated unit, then we want to find the nearest-neighbor match 
for s over the set S. Given some distance metric, this match 
is the element of S which minimizes the distance from s.7  
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Different distance metrics can result in different matches. In 
this article, we consider two implementations of nearest-neigh-
bor matching. The first method is based upon the distance be-
tween pretreatment outcome vectors as determined by the L2 
norm, while the second uses the L1 distance between coeffi-
cients in an ordinary least squares regression of pretreatment 
outcome measurements on time (i.e., pretreatment trend).

SIMULATIONS
To examine the effect of RTM bias, we simulate a 

single treated unit alongside n0 = 40 controls. For control 
units, outcome measurements are drawn from a multivariate 
normal distribution with mean µ0, marginal variance σ2 = 1, 
and first-order autoregressive (AR(1)) covariance structure 
with correlation ρ|ti −tj | between outcome measurements at ti 
and tj. The treatment unit is simulated similarly, with mean 
µ1 rather than µ0. For each simulated dataset, the treated unit 
is matched to controls using the synthetic control method, 
nearest neighbor based on the L2 norm, and nearest neighbor 
based on pretreatment trend. For comparison, we provide an 
estimate of the treatment effect using the unmatched differ-
ence-in-difference. The situation we consider—that of one 
single unit and many controls—is typical for applications 
of synthetic control and unmatched difference-in-difference 
but is uncommon for 1:1 nearest-neighbor matching. Al-
though it is not common under this setup, we implement the 
1:1 nearest-neighbor matching approach to facilitate com-
parison with the other methods under study. Additionally, 
simulations by Daw et al12 were based on 1:1 nearest-neigh-
bor matching.

If we define Y n Yj kjk c
0 0

1= −
∈∑  as the mean of the con-

trol units’ outcomes at time j, then we calculate the unmatched 
difference-in-difference estimator as follows:
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For the nearest-neighbor and synthetic control methods, 
the estimator for treatment effect simply replaces Y j0  with 
the value of the matched or synthetic control at time j. Be-
cause each unit is simulated multivariate normal with constant 
mean, the parallel trends assumption holds. Additionally, for 

µ1 relatively close to µ0, the synthetic control method should be 
able to find wk such that Y w Yj k kjk c1 ≈

∈∑  for j ∈ {1, . . ., τ0}.  
If treated and control units are drawn from the same under-
lying distribution (µ1 = µ0), then all estimators would be un-
biased for the ATT. However, when µ1 ≠ µ0, both the matched 
difference-in-difference estimator and the synthetic control 
estimator will be biased from RTM.

Type I Error Rate
We first consider the effects of outcome level match-

ing on type I error rates. For each method, we use permuta-
tion tests to test the null hypothesis of no treatment effect. For  
i = 1, . . ., n0 + 1, sequentially treat individual i as if they were 
the treated unit and estimate θ� i  for i = 1, . . ., n0 + 1. The  

P value for this test is given as P n i= ≤( )− ∑1
1I θ θ� � .

We consider settings with varying levels of µ1 (µ1 =  
1, ...5), ρ (ρ = 0.00, 0.25, 0.50, 0.75, 0.90), and number of pre-
treatment observations (4 or 10). Each unit is simulated with 
four posttreatment observations. For each setting, 2000 simu-
lations are performed. Results for simulations with four and 
10 pretreatment observations are presented in Tables 1 and 2, 
respectively. In both settings, as µ1 moves further from µ0, the 
type I error rate for the synthetic control and outcome-level 
based nearest-neighbor approach increases. Additionally, as 
the correlation between repeat observations, ρ, increases, the 
type I error rate decreases. In all cases, the synthetic controls 
method leads to greater type I error rate inflation than the 
nearest-neighbor methods. Because the synthetic control uses 
information from all control units, there is less variance in the 
biased estimator. Matching on pretreatment linear trend does 
not appear to increase type I error rates in any scenario. This 
is consistent with findings from Daw et al.12 By comparing 
Table 1 with Table 2, we see that the maximum type I error 
rate is greater when there are fewer pretreatment observations. 
As the number of preintervention observations grows, there 
will be less variability in the average preintervention outcome 
levels of each patient. Because of this, the maximum average 
among control units is expected to be closer to µ0 when there 
are many preintervention observations than when there are 
fewer. This results in less bias due to RTM and lower type I 
error rates.

TABLE 1.  Type I Error Rates for the Unmatched Difference-in-Difference, SC, NN1, and NN2

Type I Error Rate: Varying µ1 Type I Error Rate: Varying ρ

µ1 Unmatched SC NN1 NN2 ρ Unmatched SC NN1 NN2

1.00 0.05 0.16 0.09 0.05 0.00 0.05 0.40 0.29 0.06

2.00 0.05 0.31 0.19 0.05 0.25 0.04 0.39 0.29 0.05

3.00 0.05 0.35 0.25 0.05 0.50 0.04 0.36 0.27 0.05

4.00 0.05 0.35 0.26 0.05 0.75 0.05 0.25 0.18 0.05

5.00 0.04 0.33 0.25 0.05 0.90 0.05 0.18 0.13 0.05

Data are simulated using 4 preintervention observations. In all simulation settings, µ0 = 0 and σ2 = 1. For simulations varying µ1, ρ = 0.5. For simulations varying ρ, µ1 = 5.
NN1 indicates nearest neighbor using the L2 norm; NN2, nearest neighbor using linear trends; SC, synthetic control.
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Matching with Covariates
Because the motivating model for the synthetic control 

procedure includes covariates which are associated with the 
outcome of interest, we perform simulations to show the effects 
of regression to the mean in this setting. We simulate a covari-
ate X from a multivariate normal distribution with mean γ0 for 
control units and γ1 for the treated unit. X is simulated with 
an AR(1) error covariance structure with variance, σ2

X = 0.25,  
and correlation, ρX = 0.4. For each unit, Yi is multivariate 
normal with mean µi + βxXi, where µi = µ1 for the treated unit 
and µi = µ0 for control units. The synthetic control method now 
uses both preintervention levels of Y and X when constructing 
weights. We also consider unmatched and nearest-neighbor 
matching in our simulations. The first variation of nearest-
neighbor matches on the preintervention levels of X, while the 
second matches on preintervention trend in X.

Table 3 contains type I error rates obtained while vary-
ing the value of γ1 between 0 and 5 and βx between 0 and 2. 
In these simulations, µ0 = 0, µ1 = 5, and ρ = 0.5. The type I 
error rate increases as the distributions of X in the treated and 
control groups move further apart and as the effect of X on the 
outcome level increases.

Bias Toward the Null
As evidenced by previous simulations, matching on pre-

treatment outcomes can lead to anticonservative bias. How-
ever, in some settings where there is a treatment effect, RTM 

can also result in bias toward the null. To illustrate this phe-
nomenon, we perform 1000 simulations with µ0 = 0, µ1 = 2, 
and ρ = 0.5. We induce a treatment effect, θ. For each addi-
tional time point in the treatment period, the expected out-
come for the treated unit increases by θ. For negative θ, the 
treatment effect and bias due to RTM are working in opposite 
directions resulting in bias toward the null and conservative 
rejection rates. Figure 1 provides rejection rates for the un-
matched, nearest-neighbor, and synthetic control procedures 
when θ is between 0 and −1.5. As in the previous simulations, 

TABLE 2.  Type I Error Rates for the Unmatched Difference-in-Difference, SC, NN1, and NN2

Type I Error Rate: Varying µ1 Type I Error Rate: Varying ρ

µ1 Unmatched SC NN1 NN2 ρ Unmatched SC NN1 NN2

1.00 0.05 0.16 0.07 0.06 0.00 0.05 0.26 0.08 0.05

2.00 0.04 0.25 0.12 0.04 0.25 0.06 0.22 0.08 0.05

3.00 0.05 0.24 0.15 0.04 0.50 0.05 0.16 0.07 0.05

4.00 0.04 0.25 0.15 0.05 0.75 0.05 0.11 0.07 0.05

5.00 0.05 0.26 0.17 0.04 0.90 0.05 0.07 0.06 0.03

Data are simulated using 10 preintervention observations. In all simulation settings, µ0 = 0 and σ2 = 1. For simulations varying µ1, ρ = 0.5. For simulations varying ρ, µ1 = 1.
NN1 indicates nearest neighbor using the L2 norm; NN2, nearest neighbor using linear trends; SC, synthetic control.

TABLE 3.  Type I Error Rate for the Different Estimators of the ATT

Type I Error Rate: Varying γ1 Type I Error Rate: Varying βx

γ1 Unmatched SC NN1 NN2 βx Unmatched SC NN1 NN2

0.00 0.05 0.27 0.06 0.03 0.0 0.05 0.30 0.05 0.04

1.00 0.04 0.37 0.05 0.05 0.5 0.05 0.32 0.05 0.04

2.00 0.06 0.36 0.06 0.05 1.0 0.05 0.38 0.05 0.05

3.00 0.06 0.36 0.05 0.05 1.5 0.05 0.36 0.06 0.05

4.00 0.05 0.39 0.05 0.05 2.0 0.04 0.35 0.04 0.03

Data are simulated using 4 pretreatment observations and a covariate associated with the outcome level. Here, µ0 = 0, µ1 = 2, ρ = 0.5, and σ2 = 1. When varying γ1, βx = 1. When 
varying β1, γ1 = 1.

NN1 indicates nearest neighbor using the L2 norm; NN2, nearest neighbor using linear trends; SC, synthetic control.

FIGURE 1.  Empirical probability of rejecting the hypothesis 
that there is no treatment effect (θ = 0) as a function of θ 
using the unmatched, synthetic control method (SC), nearest-
neighbor matching on L2 norm (NN1), and nearest-neighbor 
matching on linear trend (NN2).
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can also result in bias toward the null. To illustrate this phe-
nomenon, we perform 1000 simulations with µ0 = 0, µ1 = 2, 
and ρ = 0.5. We induce a treatment effect, θ. For each addi-
tional time point in the treatment period, the expected out-
come for the treated unit increases by θ. For negative θ, the 
treatment effect and bias due to RTM are working in opposite 
directions resulting in bias toward the null and conservative 
rejection rates. Figure 1 provides rejection rates for the un-
matched, nearest-neighbor, and synthetic control procedures 
when θ is between 0 and −1.5. As in the previous simulations, 

we see that when there is no treatment effect, the synthetic 
control method exhibits inflated type I error rates, while the 
unmatched data have appropriate rejection rates.

As the treatment effect increases, the rejection rate of 
the unmatched estimator’s power surpasses that of the syn-
thetic control method. These results indicate that, depending 
on the direction of the treatment effect in relation to the direc-
tion of RTM, the synthetic control method can result in either 
conservative or anticonservative bias.

Correction and Sensitivity Analysis
Suppose Y1, . . ., YT are jointly normal random vari-

ables. By properties of the multivariate normal distribution, 
for any given i and j, we have E[ | ] ( )Y Y Yi j i ij ij j j= + −−µ µΣ Σ 1 .  
If we know the mean vectors and the covariance structure for 
each unit, then we can use this representation to account for 
RTM bias in matched difference-in-difference estimates of the 
ATT. To illustrate, suppose we have a single treated unit and 
a sample of control units. Using a 1:1 matching technique, 
the treated unit Y1 is matched with a control unit, Ym, and an 
estimate of the ATT, θ� obs, is obtained. This estimate can be 
conceptualized as the sum of the effect due to RTM bias and 
the effect due to treatment. Our correction technique subtracts 
the estimated effect of RTM, θ� rtm, from the observed effect to 
obtain a bias-adjusted estimate of the ATT, θ θ θ� � �

adj obs rtm= − .
If we assume that observations are normally distrib-

uted and follow a Markov process (as would be true for an 
AR(1) error structure), then we can predict postintervention 
observations using only the most recent preintervention ob-

servation. Define Y ij
�  = µij + ∑ ∑ −( )−

j i iYτ τ ττ τ µ
0 0 00 0

1  for j > τ0 
and i ∈ {1, m}, where m is the index of the matched control 
unit. Here, τ0 is the final pretreatment observation time and  
μij = E[Yi

0(j)] is the expected potential outcome level under no 
treatment for unit i at posttreatment time j. Y ij

�  is the expected 
observation for unit i at posttreatment time j conditional on 
the pretreatment observations assuming no treatment effect. 
Estimating the ATT using these expected values in place of 
observed posttreatment values for the treated and matched 
control units provides θ� rtm , which can be used to find θ� adj. 
To generalize this adjustment for use with synthetic controls, 
first obtain the synthetic control weights wk for k ∈ C. Using 
these weights, construct a synthetic outcome vector YS, where 
Y w YSj k kjk c

=
∈∑ , and corresponding estimate of the ATT, θ� obs.  

To obtain the expected estimate of ATT under RTM, construct 

an augmented synthetic control by replacing post treatment 

control measurements with the previously defined values Y ij
� s

and incorporating the fit weights, W k. Note that Y ij
�  replac-

ing posttreatment control measurements must be found for  
j ∈ {1, ..., n}. Call this augmented control ŶS  and calculate 
θ� rtm by subtracting the mean difference in observed pretreat-
ment outcomes of the treated unit and the synthetic control 
unit from the mean difference in expected posttreatment out-
comes. The covariance matrices used to construct the Y ij

�  in 

this correction procedure are those of the unmatched and un-
weighted observations. The goal of this procedure is to use pre-
intervention observations to estimate the expected outcomes of 
each unit in the postintervention period under the assumption 
of no treatment effect. Applying the different estimators of the 
ATT to those projections allows us to determine what portion 
of the original estimate of the ATT is explainable by RTM bias.

As a proof of concept, we perform 2000 simulations 
with outcomes drawn from a multivariate normal distribution 
with AR(1) error structure. Here, µ0 = 0, µ1 = 1, σ2 = 1, ρ = 0.5,  
and there is no treatment effect. For each simulation, we test 
the null hypothesis of no treatment effect using the permu-

tation test described earlier, replacing θ� i  with θ� i adj, . To test 
if this adjustment is robust to deviations from this assump-
tion, we also determine type I error rates when outcomes are 
drawn from a multivariate t distribution. Simulation results are 
given in Table  4. When errors are normally distributed, the 
adjusted synthetic control estimate of the ATT attains nom-
inal type I error rates. Error rates are inflated for t distrib-
uted outcomes, particularly for highly correlated outcomes. 
However, observed error rates are lower than those obtained in 
Table 1 using the unadjusted synthetic control approach with 
normally distributed errors.

In practice, estimating θ� adj  is not possible without assum-
ing the values of µ1j, µ0j, ρ, or σ. We propose treating these as 
sensitivity parameters. By positing a range of values for these 
parameters and calculating θ� adj  under each set, we can quantify 
how much an estimate of the ATT is affected by RTM.

Reanalysis of Smoking Cessation Data
To further understanding of our proposed sensitivity 

analysis, we reanalyze data from Abadie et al2 concerning the 
effect of California’s Proposition 99 on smoking cessation. 
The act added a 25 cents per pack tax on the sale of ciga-
rettes and earmarked tax revenue for use in health care pro-
grams and antitobacco advertisements. The original analysis 
concluded that the initiative decreased cigarette consumption 
in California by approximately 20 packs per capita annually. 
Because this analysis was based upon the synthetic control 
method, we aim to determine if these findings are robust to 
RTM bias using our proposed sensitivity analysis.

TABLE 4.  Type I Error Rates for the Adjusted Difference-
in-Difference Estimator When Normality Assumption Is Not 
Satisfied

Degrees of Freedom ρ = 0.25 ρ = 0.50 ρ = 0.75

∞ (Normal) 0.05 0.05 0.05

50 0.05 0.05 0.06

10 0.05 0.06 0.08

3 0.05 0.08 0.12

Errors come from a t distribution with degrees of freedom described.
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Following the original study, this analysis was based 
upon cigarette consumption rates in California and 38 control 
states. Figure 2 provides a plot of cigarette consumption rates 
between 1970 and 2000 for the included states. To construct 
the synthetic control unit, we use logged per capita GDP, the 
average retail price of cigarettes within each state, beer con-
sumption per capita, the percentage of the population aged 15 
to 24, and cigarette sales in the pretreatment years 1975, 1980, 
and 1988. Without adjustment, we estimate that Proposition 
99 reduced consumption by 18.9 packs per capita annually 
between the years 1989 and 2000.

To perform the sensitivity analysis we must (1) propose 
a set of reasonable models for the distribution of outcomes 
under no treatment effect for both the treated and control 
groups, (2) calculate the expected value of outcomes in the 
posttreatment period given our assumed outcome models and 
pretreatment observations, and (3) calculate adjusted esti-
mates of the ATT using these values. Proposed distributions 
of outcomes under no treatment effect can be pulled from do-
main knowledge or from statistical modeling. For illustration, 
we employ generalized estimating equations (GEE) with an 
AR(1) working correlation matrix to regress per capita cig-
arette sales on the covariates used to construct the synthetic 
control. Because this model is meant to estimate the ATT 
under the assumption of no treatment effect, we fit the model 
using all states. If there is no treatment effect, then even Cali-
fornia’s outcomes are representative of outcomes under no 
treatment. The estimated residual standard deviation is 11.6 
and the sample correlation is 0.72. Let gi(t) denote the pre-

dicted value from the fit model for unit i at time t. Define Y ij
�  

= ρ�
j

i iY g
−

−( )1988

1988 1988, ( )  + gi(j) for j > 1988 and i ∈ {1, . . .,  
39}. If Wk for k ∈ C are the weights for our synthetic con-

trol, then θ� � �
rtm j sj

j j sjj
Y Y Y Y= −( )− −( )= =∑ ∑1

12

1

19
1

1989

2000

11970

1988
, 

where Y w Ysj k kjk c
=

∈∑  and Y w Ysj k kj
k c

� �=
∈∑ . This expected 

estimate under no treatment effect is then subtracted from 
the observed estimate to obtain the adjusted estimate of the 
ATT. Using this procedure, the adjusted estimate of the ATT is  
12.1 with P value 0.10. We also consider the set of outcome 
models indexed by ∆: gi(j; ∆) = gi(j) + ∆ I(i = 1). This is the 
same null outcome model considered above except we shift the 
mean of the treated unit by ∆. For ∆ = −1 and 1, the adjusted 
estimates of the ATT is 11.3 (P = 0.1) and 12.9 (P = 0.05). 
Likewise, if we look at ∆ = −5 and 5, then the estimates of the 
ATT become 8.14 (P = 0.3) and 16.0 (P = 0.05). Because the 
estimated treatment effects and associated P values vary over 
relatively similar null outcome models, there is evidence that 
RTM may play a large role in our estimate of the ATT and 
suggest that further research be done to determine the effect 
of the tobacco tax.

Applying multiple models for the null outcome distri-
bution when performing this analysis can help better char-
acterize the sensitivity of results. If, instead of an AR(1) 
structure, we had chosen an unstructured error model then 
the adjustment would proceed as described except we 
would change our calculation of Y�. In this case, calculate  
Y ij
�  = Y g g ji i ij pre , ,,,

( )pre prepre pre
−( )+−∑∑ 1

, where Yi,pre is the 

vector of preintervention observations, gi,pre is the vector of 
predicted preintervention outcomes obtained from our fit 
model, and Σpre,pre is the estimated covariance matrix of the 
preintervention outcomes. Because the unstructured model 
does not have the Markov property, we must condition on 
all pretreatment observations when calculating our expected 
values of Y under the null distribution.

DISCUSSION
In this article, we have illustrated the effects of RTM 

bias on matched difference-in-difference estimators. This 
builds upon work done by Daw and Hatfield12 showing the 
bias induced by 1:1 nearest-neighbor matching. Here, we have 
shown how the synthetic control approach can also introduce 
bias and have provided simulations showing the effect of this 
bias on type I error rates and power. Our results suggest that 
synthetic control approaches are more prone to bias than 
nearest-neighbor matching. Added “confidence” in the model, 
gained from utilizing information from all of the control units, 
can increase the type I error rate by a factor of two over the 
nearest-neighbor approach. We also developed an approach to 
determine the sensitivity of matched estimators of the ATT 
to RTM bias. Using our approach, we showed that previous 
results concerning the effect of Proposition 99 on cigarette 
consumption in California2 may be overstated. The results we 
obtained differ from those of Ryan et al,26 which showed that 
matching can be beneficial in settings where the probability 
of treatment is associated with preintervention outcomes, 
but both treated and control units are drawn from the same 
underlying distribution. In our simulations and in those of 
Daw and Hatfield,12 treated and control units are drawn from 
populations with different outcome distributions. Because it 

FIGURE 2.  Tobacco consumption (per capita cigarette con-
sumption) in a subset of states between 1970 and 2000. Ca-
lifornia highlighted in black, treatment initiation indicated by 
dashed vertical line.
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is difficult to know which of these two settings hold, we can-
not know whether matching will be protective against bias or 
if it will induce bias. There is a need for methodology which 
performs well in either settings. In recent work, Doudchenko 
and Imbens13 and Arkhangelsky et al,6 propose novel syn-
thetic control approaches that weight control units based on 
how similar their preintervention outcome trends are to that 
of the treated unit. Because our results show that matching on 
trend did not induce bias, these implementations of synthetic 
control could be helpful. Further research is needed to deter-
mine how these and other recent approaches (such as that of 
Ben-Michael et al9) are affected my RTM bias.

Because the goal of this article is to examine the effects 
of RTM on the simpler and more popular variants of synthetic 
controls and matched difference-in-difference, we do not con-
sider these approaches. Additionally, we do not consider how 
k:1 matching techniques are affected by RTM bias. Stuart28 
suggests that whether k:1 matching is superior to 1:1 match-
ing depends on the setting. Thus, comparisons with k:1 match-
ing may be more nuanced and deserving of further research.

In the future, it may be worthwhile to look for ways to 
correct for RTM bias when we cannot assume normality of 
errors. For t distributed errors, we noticed that type I error 
rates were slightly greater than desired α levels. While the ad-
justment still performed better than the unadjusted synthetic 
control estimator, we believe the method could be improved 
upon. As a whole, we believe that when researchers apply 
matched difference-in-difference estimators, they should also 
provide evidence that their results are robust to RTM bias, ei-
ther by using our adjusted difference-in-difference estimator 
or by providing a sensitivity analysis.
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APPENDIX
We wish to prove:

D t Y t Y t A
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Consider the following:
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Here, the second line follows from the consistency 
assumption. Next note, for A = 0 or 1, the expected value of 
the potential distribution can be rewritten as follows:
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The second line is true because we assume Y0(t)╨ A|X. 
Plugging this into the expression for D(t) we can
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