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Use of composite outcomes to assess
risk–benefit in clinical trials

Pamela A Shaw

Abstract
Before a novel treatment can be deemed a clinical success, an assessment of its risk–benefit profile must be made. One
of the inherent challenges for this assessment comes from the multiplicity that arises from comparing treatment groups
across multiple outcomes. Composite outcomes that summarize a patient’s clinical status, or severity, across a priori-
tized list of safety and efficacy outcomes have become increasing popular. In this article, we review these approaches and
illustrate through examples some of the challenges and complexities of a composite derived from prioritized outcomes,
such as the win ratio. These challenges include the difficult tension between the analytical validity that comes from
choosing a pre-specified outcome and an evaluation that is responsive to unexpected safety events that arise during the
course of a trial. Other challenges include a sensitivity of the resulting test statistic to the underlying censoring distribu-
tion and other nuisance parameters. Approaches that resolve some of the difficulties of the analytical challenges associ-
ated with prioritized outcomes are then discussed. Ultimately, a composite outcome of net clinical benefit is another
decision tool, but one to be used alongside more traditional analyses of efficacy and safety, and with the broader per-
spective that investigators, the data safety monitoring board, and regulators bring to an evaluation of risk–benefit.
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Introduction

Under the classical paradigm for clinical trials, separate
efficacy and safety endpoints for an intervention are
developed. Early phase studies emphasize safety, while
later-stage, large phase III studies have efficacy as the
primary endpoint.1 A fundamental part of assessing a
novel intervention is also to examine results from com-
prehensive safety and efficacy analyses to assess the
risk–benefit balance. While evaluation of efficacy in a
well-designed clinical trial generally involves a straight-
forward hypothesis test for whether the size of the ben-
efit is large enough to reject a pre-specified null
hypothesis, evaluation of the balance of benefit and
risk is much less straightforward. This analysis will
necessarily need to take into consideration the serious
nature of the condition being treated, whether there are
any other available drugs, and the risk–benefit profile
of other available therapies. This type of evaluation
typically leads to a subjective weighing of the cumula-
tive evidence to address whether the balance of risk–
benefit points to an overall benefit of a drug, despite
the associated risk.

Recently, there has been renewed attention on the
development data-driven statistics that summarize net

clinical benefit, which could be part of a risk–benefit
evaluation. Evans and Follmann2 propose that later-
stage pragmatic trials should in fact have as their pri-
mary outcome an endpoint that summarizes risk–
benefit rather than the traditional outcome focused on
efficacy alone. These authors argue that an endpoint
that assesses the balance of risk–benefit within a patient
first and then summarizes that assessment across
patients in a given trial is better aligned with the objec-
tives of patient-centered outcomes. Such an endpoint
would rely on a system that in some way ranks or com-
bines weighted or scored outcomes that are a combina-
tion of efficacy and safety outcomes, in order to
quantify the within-patient outcome of balance of risk–
benefit. Many proposals to assess net benefit, either
over multiple efficacy endpoints or over benefits and
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risks, have appeared in the statistical literature.3–17

Several authors have developed a two-sample test statis-
tic that summarizes information on whether the experi-
ence on the investigational treatment is better across
treatment–control pairs.3–7 For example, Buyse5 looked
at the ‘‘proportion in favor of treatment’’; Pocock et al.6

estimated the ratio of wins to losses for treatment–
control pairs. Others categorize patients with an ordinal
or continuous severity score that summarizes outcomes
across a list of positive and negative outcomes, with the
most extreme (or highest prioritized) outcome typically
dominating the severity score.8–10 Outcome ranking-
based systems have been applied in clinical settings in
infectious disease,11–14 neurological outcomes,15 and
cardiovascular disease.16–17 Others propose a weighted
combination of multiple outcomes.18,19 In a recent
review, Armstrong and Westerhout19 identified 140 clin-
ical trials that had a primary composite cardiovascular
outcome, and of these, 10 reported a combined efficacy/
safety composite to assess net clinical benefit.

The complexity of interpreting test statistics of prior-
itized or weighted outcomes, which summarize overall
patient status across multiple endpoints, often belies
their intended simplicity. This article provides a review
of a few recent proposals for these clinical severity or
‘‘totality of outcomes’’ composite outcomes in order to
highlight important considerations when applying such
an approach. Some of the analytical difficulties of cre-
ating the test statistic, interpreting the parameter being
estimated and potentially using this composite to com-
pare results across trials are highlighted. Finally, con-
cluding remarks regarding the usefulness of such
approaches to summarize risk–benefit are discussed.

A motivating example: the Women’s
Health Initiative hormone replacement
trials

Between 1993 and 1998, the US Women’s Health
Initiative randomized 27,347 women into one of two
primary prevention trials to examine whether estrogen
plus progestin or estrogen alone would prevent coron-
ary heart disease.20,21 Observational studies suggested
long-term hormone replacement therapy use would be
associated with a 30% to 50% reduction in coronary
events and an 8% to 30% increase in breast cancer; a
number of other outcomes were of interest, including
potential benefits for hip and other fractures.22,23 A
monitoring plan was put in place, with formal bound-
aries for both efficacy and harm.24 There were eight
individual outcomes that were considered roughly of
equal importance, including coronary heart disease, the
primary efficacy outcome, and breast cancer, the pri-
mary safety outcome. The time to the first of these
eight events formed the global index encompassing
benefit and risk, and there was a two-stage process for

stopping early either for harm or for benefit that would
consider the primary single outcome and the global
index. To recommend stopping for efficacy, first the z-
value for the primary efficacy outcome had to cross the
one-sided upper O’Brien–Fleming 2.5% boundary and
then the global index would be compared to the 5%
upper boundary. To stop for harm, if one of the eight
monitored endpoints crossed the lower one-sided
O’Brien–Fleming 5% boundary, then the global index
had to drop below 21. The pre-specified analysis for
the global index used a weighted log-rank statistic to
down-weight earlier events. It was expected that there
would be early efficacy on the heart endpoints, but late
harm for breast cancer. The data safety monitoring
board (DSMB) also examined the unweighted log-rank
for the global index, as it would be undesirable to
down-weight early events in the case of early harm.

The monitoring boundaries were chosen based on
the pre-trial expectations of the risks and benefits of
hormone replacement therapy. During the course of the
Women’s Health Initiative trials, however, which end-
point was the safety endpoint and which endpoint was
the efficacy endpoint came into question. Early on in
the monitoring, the active arm in both trials showed an
apparent increased risk of coronary heart disease,
stroke, and pulmonary embolism; later on, benefit for
breast cancer emerged in one of the trials and harm in
the other.25 A debate ensued mid-trial about whether or
not the safety endpoint should be modified in reaction
to the emergent data.25 The DSMB ultimately decided
against formally defining a composite endpoint of cor-
onary heart disease, stroke, and pulmonary embolism
as a new, monitored endpoint. To make things even
more complicated, the level of significance and the
direction of the effect for some of the endpoints of
interest were different, depending on whether the pre-
specified weighted log-rank or the unweighted test was
used.

The Women’s Health Initiative hormone replace-
ment therapy trials are instructive on many levels. First,
it is notable that despite these trials being preceded by
decades of clinical data regarding potential benefits and
harms, a wealth of data rarely available at the start of a
clinical trial, several unexpected findings still occurred.
Second, without perfect knowledge in advance regard-
ing which outcomes will in fact be affected by the ther-
apy (negatively or positively), it is likely that any pre-
specified statistic will be missing an important compo-
nent of the outcomes that contribute to the balance of
risk–benefit. Third, monitoring multivariate outcomes
is complex, and a single unidimensional p value will
rarely be an adequate summary of the overall effect of
the intervention. Finally, this example shows the need
for incorporating a flexible framework for the assess-
ment of risk–benefit—one that can be responsive to
emerging evidence as a trial progresses. Even with a
well-laid out framework of statistical hypothesis testing,
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decision-making will inevitably involve evaluation of
data regarding multiple outcomes and a subjective judg-
ment of the totality of evidence regarding risk–benefit.
See Freedman et al.24 and Wittes et al.25 for further dis-
cussion of the monitoring of the Women’s Health
Initiative hormone replacement therapy trials.

Assessing risk–benefit with a composite of
prioritized outcomes

At all stages of development, investigators and spon-
sors need to evaluate the risk–benefit balance of an
intervention to inform the decision about whether the
treatment is worth further study or continued use in a
population. In the later phases of development, say in
the context of a blinded phase III randomized clinical
trial, a DSMB is generally in place and charged with
assessing that the intervention maintains an acceptable
risk–benefit balance in order to recommend continua-
tion of the study.26 To this end, this committee would
typically be presented with analyses of several separate
endpoints; these generally include the primary efficacy
endpoint, any key secondary efficacy outcomes, and
key safety outcomes, along with tables of the reporta-
ble adverse events experienced during the trial. The
DSMB then needs to weigh the totality of evidence and
make a necessarily subjective judgment regarding the
overall balance of benefit and risk and whether to rec-
ommend continuing or stopping the trial. An alternate
approach to assess for risk–benefit uses a statistical
quantity to summarize the risk–benefit quantitatively,
say in the form of a composite endpoint. In this sec-
tion, we concentrate on this second approach, which
some in the literature have termed the only objective
approach.2 We will see that the quantification of this
risk–benefit balance necessitates a composite endpoint
and ultimately subjective choices regarding the relative
weight, either directly or indirectly, given to each end-
point in the final test statistic. We focus on recent pro-
posals to assess risk–benefit through a summary of
prioritized outcomes.

Pocock et al.6 propose the win ratio statistic for the
setting of a randomized controlled trial, by which
patients are first ranked by their baseline risk for the
event of interest in order to create matched control–
treatment pairs. Members of each pair are then com-
pared according to a predetermined set of prioritized
outcomes and ranked as the winner or loser for that
pair based on the outcome of highest priority for which
they could be compared. For example, if there are two
endpoints of interest, time to hospitalization and death,
time to death would generally be given the higher prior-
ity. The subjects in a pair would be ranked better or
worse first by time of death. If this was not possible,
say if one patient was censored before the other had
died, the patients are then ranked according to their

time to first hospitalization. If the entire list of priori-
tized outcomes was exhausted and subjects within a
given pair could not be ranked, then they are consid-
ered a tie. This statistic is similar to that of Buyse5 who
considered the proportion in favor of the treatment,
estimated by assigning a score to each pair as in favor
(1), neutral (0), or not in favor (21) of the treatment
and then taking the mean of this score over all possible
treatment–control pairs. Buyse drew connections
between his proportion favoring the treatment to the
Wilcoxon rank-sum statistic and the ‘‘probabilistic
index’’ P(X . Y), where X is the outcome for control
and Y for treatment.27 The win ratio statistic is simply
the ratio of wins to losses for the treatment group. The
p value is readily computable, as is the confidence inter-
val.6 The win ratio statistic can also be calculated with-
out matching, averaging over all treatment–control
pairs; there is some power gain if you have a good risk
profile for matching, but pairing is not necessary. Bebu
and Lachin28 provide a straightforward inference pro-
cedure for the case of unmatched pairs. Luo et al.7,29

provide a weighted version of the win ratio statistic,
along with software.

The benefits of the win ratio appear intuitive and
this has likely led to the popularity of this and related
approaches. The statistic can incorporate information
regarding the timing of all important outcomes. The
win ratio also allows more severe events, not just the
first-occurring, to determine the outcome of a pair.
This is particularly useful when the earlier events tend
to be less severe. If the novel treatment is having a simi-
lar effect on the highest prioritized outcomes, then it
could have higher power, although this is not guaran-
teed. Pocock et al.6 discussed this statistic to summarize
overall net benefit across multiple efficacy endpoints
typical in the cardiovascular setting; however, it has
also been proposed to summarize net benefit across
positive and negative outcomes.30 Less intuitive fea-
tures of the win ratio are illustrated with the following
example adapted from Shaw and Fay.10

The historic studies of left ventricular dysfunction
(SOLVD) included a randomized placebo-controlled
trial of enalapril for the prevention of mortality and
hospitalization in patients with congestive heart failure
and weak left ventricular ejection fraction.31 There were
over 2500 patients randomized and the active drug was
found to be beneficial for mortality and for the compo-
site outcome, time-to-first of death or hospitalization.
For illustrative purposes only, consider the subset of
diabetic subjects, a group who in some settings can have
a difficult-to-balance set of risks and benefits. If the dia-
betic condition increased risk of cardiovascular side
effects, the composite outcome becomes one of com-
bined safety and efficacy. In this group, there were 137
deaths out of 319 on enalapril and 145 deaths out of
343 on placebo (Table 1). The hospitalization outcome
showed a much larger effect with 94 events on the active
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arm and 195 on the placebo. The log-rank score test
demonstrated that there was no apparent effect on the
time to mortality (p = 0.91) and a large effect on time-
to-first of mortality or hospitalization (p \ 0.001).
Statistics that prioritize mortality thus stand to provide
a very different summary of benefit than the time-to-
first outcome. To compute the win ratio statistic, a risk
profile based on available baseline cardiovascular risk
factors was used to rank patients on their baseline risk,
creating 319 pairs. In all, 24 patients necessarily go
unused. Ranking first on time-to-mortality and then on
hospitalization yielded 145 wins on the active, 112 wins
on placebo, and 62 indeterminate pairs, for a ratio of
1.29 and p value of 0.038. There were 98 wins on death
for the active and 91 wins for placebo. Among the
minority of 68 pairs ranked on hospitalization, there
were 47 wins on active and 21 on placebo. Had the trial
run a little longer, and had the trend for death contin-
ued, the significance would have been lost. Had there
been a shorter trial, there would have been fewer
deaths, and the win for the treatment would have been
more convincing. What this example demonstrates is
that the censoring distributions of these endpoints can
determine the relative contribution of the outcomes to
the win ratio statistic. Without additional distributional
assumptions, the win ratio needs to be estimated for a
fixed follow-up time in order to have the same target
parameter summarizing the treatment effect for all
patients.32 What this implies for a large-scale trial, in
which enrollment is staggered over several years and
the length of follow-up varies across patients, is that the
target parameter will vary across patients. For a
DSMB, it can be informative to compare study results
between the trial under review and other concurrent or
recent trials of the same, or perhaps similar, interven-
tions. The sensitivity of the win ratio to the censoring
distribution limits the ability to compare results across
trials, particularly if the study populations’ baseline risk
or length of follow-up varies between the trials.
Another criticism of the win ratio is that, due to censor-
ing, a number of pairs will have indeterminate status,
with no clear winner or loser. To address this issue,

Pocock et al.6 proposed matching pairs within strata
based on randomization date. In this SOLVD example,
however, matching within randomization year strata
yielded a similar number of indeterminate pairs and so
the unstratified analysis was used to minimize the dif-
ference in matched risk scores.

Other prioritized outcomes involving time-to-event
outcomes share the same sensitivity to censoring as the
win ratio. In case of Buyse,5 Pocock et al.,6 and Shaw
and Fay,10 the prioritized composite outcome can be
written as a weighted combination of the individual
outcomes, with the weights depending on the censoring
distributions.10,33 In the case of continuous outcomes,
the probability index P(X . Y) has also been criticized
for being sensitive to nuisance parameters of a distribu-
tion, such as potentially finding a difference between
treatments when the only effect of treatment was to
change the variance of the outcome.34,35 While the
assessment of the risk–benefit balance is difficult when-
ever that balance changes over time, these trade-offs
can be much more difficult to appreciate from a one-
dimensional summary than if the risks and benefits
were analyzed separately.

Incorporating uncertainty

For settings with time-to-event endpoints, one can take
the view that the win ratio and other similar prioritiza-
tion composites are simply imputing the relative sever-
ity using less severe endpoints when the timing of the
most severe endpoint is unknown and does so without
the incorporating the uncertainty of that imputation.
Illustrating this point, Figure 1 shows the time course
for two patients: patient 1, the gray line, on treatment 1
(investigational), and patient 2, on treatment 2 (con-
trol). The patient on treatment 1 died, but then patient
2 was censored during a shorter follow-up period, so it
is unknown whether patient 2 would have been ranked
worse or better on survival. Thus, the next step for the
typical prioritized outcome is to compare the patients’
hospitalization outcome. Both patients had a hospitali-
zation, so the win ratio would give a win to the

Table 1. The number of events and p value for the log-rank statistic for the time to first hospitalization (treating death as censored),
death, and time-to-first of either outcome for diabetic subjects in the SOLVD treatment trial (N = 662)a.

Enalpril (N = 319)
N

Placebo (N = 343)
N

Log-rank Win ratiob (p value) Shaw and Fay

Hospitalization 94 148 \0.001
Death 137 145 0.91
Time to first 174 229 \0.001

1.29 (0.04) 0.07

aTable adapted from Shaw and Fay.10

bThe win ratio is based on treatment–control pairs matched on a risk score. The win ratio statistic was based on an initial sample size of 638 instead

of 662 due to 24 unmatched placebo participants. The number included in the win ratio was further reduced due to 62 (9.7%) indeterminate

outcomes within the 638 matched pairs.
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investigational treatment because patient 1 was
observed to have a later hospitalization. Following cen-
soring, patient 2 went on to die at year 4. Had we
known that, the treatment would have been given a loss
instead of a win. Furthermore, the win ratio would
have assigned the same outcome, a win, to the treat-
ment whether this patient got censored 1 day or 1 year
before patient 1 had died. Regardless of how much
follow-up without the death event, the win ratio
ignores that information and moves onto the next out-
come on the priority list. This is equivalent to a single
imputation of the missing survival outcome with no
uncertainty. Single imputation can lead to an overesti-
mated precision for the study results.

In contrast to the prioritization approaches, such as
the win ratio, there are a number of available methods
to compare treatment groups with a summary of a mul-
tivariate outcome that do incorporate the uncertainty
of each outcome. Shaw and Fay10 proposed a two-
sample rank-based statistic for clinical severity that uses
information on the bivariate survival distribution.
These authors considered the setting of a bivariate out-
come in which it was assumed one event was the true
event of interest (i.e. death) and the second event was a
surrogate, so that the severity was determined by the
survival endpoint if observed, and otherwise using the
surrogate. The test statistic was formed from a weighted
average of the different possible severity rankings for a
patient, where the weights were derived from the prob-
ability of a specific outcome conditional on the cen-
sored event time(s) and derived from the bivariate

distribution. In the authors’ example, the clinical sever-
ity summarized the net benefit observed over outcomes
representing anti-infective efficacy (clearing tuberculo-
sis) and death, which can be considered both a safety
(due to drug toxicity) and efficacy (due to disease sever-
ity) endpoint. In a 20-week trial of a novel treatment
for drug-resistant tuberculosis, a subject was given a
score of k if he died in week k; a score of 21 if he sur-
vived 20 weeks without clearing tuberculosis; and a
score of 41-k if he cleared tuberculosis in week k. Thus,
all who died were ranked worse (lower) than the survi-
vors. If a subject dropped out at week 16 after having
converted in week 5, his possible severity scores are as
follows: 36 if he truly survived 20 weeks, 17 if he died in
week 17, 18 if he died at week 18, and so on. These
authors repeated an analysis of the above described
example for SOLVD and found that their proposed
rank test for the severity score had p = 0.07 for the
treatment group difference. Although similar, the treat-
ment effect was less certain than suggested by the single
imputation win ratio method (Table 1).

Claggett et al.9 also present a method to account for
censoring in the case of an ordinal severity score sum-
marizing a patient’s clinical status across multiple,
potentially censored, endpoints encompassing risks and
benefits, by applying inverse probability of censoring
weighting. Rauch et al.33 discuss two alternate
approaches. The first is to remove the dependence of
the prioritized outcome test statistic on the underlying
censoring distributions by replacing the weights that
censoring had introduced into the test statistic with pre-
determined, fixed weights that do not depend on the
probability of observing the endpoints. The second
proposed alternative approach was to conduct a test
for the unweighted composite endpoint supported by
testing of the most important subcomponents to
resolve the interpretation difficulties, using an appro-
priate multiple testing procedure such as a sequentially
rejective test or other gate-keeping strategy.33

Discussion

Data-driven summary statistics for risk–benefit assess-
ment can be easy to gravitate to, as they appear to be a
more objective way to combine data across multiple
endpoints, relative to an individual having to process
separate analyses of several individual outcomes.
Ironically, one of the most attractive aspects of the
prioritized composite outcome is that it can incorporate
subjectivity directly. That is, the prioritization incorpo-
rates input from a panel of clinical experts and/or
patients as to which outcomes should be weighed more
heavily in the composite. The downside to such a
numerical summary of risk–benefit is that it is often
hard to appreciate the target parameter truly being esti-
mated, which can involve both implicit weighting from

Figure 1. Comparison of time to hospitalization (H) and death
(D) for a pair of patients. The left endpoint denotes time of
randomization and length of line denotes time between events
for each patient. The vertical dotted line indicates the censoring
time for patient 2, indicating his death was not observed during
the study. Owing to censoring, severity of patient 1 would be
classified as more severe for the win ratio statistic because of
the shorter time to hospitalization relative to patient 2. The
clinical severity statistic of Shaw and Fay10 would treat severity
score of patient 2 as interval-censored, between a score that
represents the best and worst possible severity scores over a
chosen length of follow-up post-randomization. The possible
scores for patient 2 depend on the possibilities for the
unobserved death time, ranging from a score based on a death
just after the censoring time (before the death of patient 1) to a
score derived from patient 2 having survived until the chosen
milestone time point.
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the relative frequency of the individual outcomes and
explicit investigator-defined weighting of the multiple
outcomes. It is also not widely appreciated that similar
censoring distributions are generally needed for time-
to-event outcomes to make the estimated parameter
comparable across patients and across trials. In settings
where the follow-up time is fixed across patients or
where any censoring has been handled appropri-
ately,9,10,32,33 prioritized outcomes will be a more
straightforward comparison across patients.

The usual caution for composite outcomes applies
to prioritized outcome composites. Composites that
summarize outcomes of varying severity and varying
frequency are hard to interpret.36 Others have criticized
their use to summarize outcomes that vary in the direc-
tion of the treatment effect, potentially allowing an effi-
cacy outcome of lesser clinical importance to obscure a
serious harm.19,37,38 Any comprehensive analysis of a
composite outcome should be accompanied by an anal-
ysis of the individual sub-outcomes for better interpre-
tation. In addition, prioritized outcomes should make
transparent the time-specific nature of the outcome,
such as 48-week severity, to clarify the time frame of
interest. If follow-up varied between study participants,
then the censoring must be handled analytically in a
way to allow the severity endpoint to estimate the same
target measure of risk–benefit across participants.9,10,33

Sensitivity analysis provides important information
regarding the robustness of study results to varying
assumptions about the relative priority or weighting of
the endpoints under consideration. Follmann et al.16

evaluated the inter-rater agreement of a priority rank-
ing of hypothetical patient profiles in a cardiovascular
setting and were encouraged by the level of between-
rater agreement. Consensus panels of patients and clini-
cians can offer input a priori on the most important
components for a composite outcome and their relative
weights or priority, and these perspectives may differ.
These types of consensus panels may need to be recon-
vened during or at the end of a trial if unexpected
events occur during the trial that were not accounted
for in the original evaluation of severity. Sensitivity
analyses are also a natural way to evaluate the impact
of different systems of weighting endpoints or assigning
the priority ranking.

Outside the risk–benefit setting, there are many
other alternative choices for test statistics whose focus
is to efficiently combine information from multiple out-
comes into a single test statistic.39–44 Many of these
summaries assume a common treatment effect, or at
least a consistent direction of the effect, across the out-
comes and thus would not be appropriate for the risk–
benefit setting. Omnibus testing approaches also often
implicitly treat the sub-outcomes as having equal
importance. Other strategies that, for efficiency, inver-
sely weight the univariate statistics according to their

variance will down-weight a seldom observed outcome,
such as death, relative to a more frequently observed
surrogate, which may not be desirable as a summary of
the risk–benefit.39,43

No approach is going to work for every setting.
Ultimately, the prioritized outcome is another decision
tool, but one to be used alongside more traditional
analyses and with the broader perspective that investi-
gators, the DSMB, and regulators bring to an evalua-
tion of benefit risk.
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