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estimates for data errors in clinical trials 
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Background   Audits are often performed to assess the quality of clinical trial data, 
but beyond detecting fraud or sloppiness, the audit data are generally ignored. In an 
earlier study, using data from a nonrandomized study, Shepherd and Yu developed 
statistical methods to incorporate audit results into study estimates and demon-
strated that audit data could be used to eliminate bias. 
Purpose   In this article, we examine the usefulness of audit-based error-correction 
methods in clinical trial settings where a continuous outcome is of primary interest. 
Methods   We demonstrate the bias of multiple linear regression estimates in general 
settings with an outcome that may have errors and a set of covariates for which some 
may have errors and others, including treatment assignment, are recorded correctly 
for all subjects. We study this bias under different assumptions, including indepen-
dence between treatment assignment, covariates, and data errors (conceivable in a 
double-blinded randomized trial) and independence between treatment assignment 
and covariates but not data errors (possible in an unblinded randomized trial). We 
review moment-based estimators to incorporate the audit data and propose new mul-
tiple imputation estimators. The performance of estimators is studied in simulations. 
Results   When treatment is randomized and unrelated to data errors, estimates of the 
treatment effect using the original error-prone data (i.e., ignoring the audit results) are 
unbiased. In this setting, both moment and multiple imputation estimators incorporat-
ing audit data are more variable than standard analyses using the original data. In con-
trast, in settings where treatment is randomized but correlated with data errors and in 
settings where treatment is not randomized, standard treatment-effect estimates will be 
biased. And in all settings, parameter estimates for the original, error-prone covariates 
will be biased. The treatment and covariate effect estimates can be corrected by incor-
porating audit data using either the multiple imputation or moment-based approaches. 
Bias, precision, and coverage of confidence intervals improve as the audit size increases. 
Limitations   The extent of bias and the performance of methods depend on the 
extent and nature of the error as well as the size of the audit. This study only con-
siders methods for the linear model. Settings much different than those considered 
here need further study. 
Conclusions   In randomized trials with continuous outcomes and treatment assign-
ment independent of data errors, standard analyses of treatment effects will be unbi-
ased and are recommended. However, if treatment assignment is correlated with 
data errors or other covariates, naive analyses may be biased. In these settings, and 
when covariate effects are of interest, approaches for incorporating audit results 
should be considered.    Clinical Trials  2012;  9 : 721 –729. http://ctj.sagepub.com    
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Introduction

Clinical trials are subjected to quality control meas-
ures to ensure the validity of data and, hence, the 
accuracy of the study findings. Data audits are rou-
tinely performed, in which auditors compare the 
data sent to the data coordinating center with that 
in the source documents. Site-specific audits may be 
performed at a given frequency (e.g., every 3 years) 
to verify site quality, or trial-specific auditing proce-
dures may be routinely implemented. The selection 
of a relatively small random sample provides assur-
ance of data quality. If error rates are unacceptable, 
site enrollment may be suspended until the data-
quality procedures are in place. However, beyond 
that, information from the audit about errors is 
typically ignored.

In a recent article, Shepherd and Yu [1] devel-
oped methods to incorporate audit findings into 
study estimates. Their methods are similar to those 
developed to adjust parameter estimates for classical 
covariate measurement error [2,3] but addressed a 
more general error structure where both the predic-
tor and outcome variables could have errors, possi-
bly correlated. Shepherd and Yu focused on the 
setting of a nonrandomized experiment and applied 
their methods to data from a multicenter observa-
tional cohort study of patients infected with HIV. 
Unlike the clinical trial setting, data audits are rare 
in observational studies, yet rates and magnitudes 
of errors are often quite high [4]. Shepherd and Yu 
found that, in certain settings, audit data could be 
used to reduce bias and to improve the precision of 
results. In this article, we will discuss incorporating 
audit findings to the analysis of data from clinical 
trials.

In randomized clinical trials (RCTs), the treat-
ment effect is generally the parameter of primary 
interest. If there are important prognostic baseline 
covariates, it may be preferable to estimate the treat-
ment effect from a model that adjusts for these 
covariates rather than performs a simple compari-
son of outcome between treatment groups. In some 
trials, randomization is stratified by important 
covariates; in these trials, analysts may also adjust 
for the stratifying covariates. Adjusting for covari-
ates that are correlated with the outcome can 
improve the precision of the treatment-effect esti-
mates and reduce bias due to chance imbalance in 
treatment assignment [5,6]. There is considerable 
debate over when and for which covariates to adjust 
for in a randomized trial, one concern being the bias 
that can be introduced when such covariates are 
chosen using a post hoc selection procedure [6–8].  
We put this debate aside and presume a setting 
where important prognostic pretreatment covari-
ates are known a priori to exist, are possibly recorded 
with errors, and an analysis adjusting for these 

covariates is of interest, either as a primary or sup-
portive analysis of the treatment effect.

In the context of clinical trials, two types of 
covariate errors could be revealed by the auditing 
process: errors involving the treatment assign-
ment and errors involving other participant data. 
We focus on the latter. Here, we consider the 
potential impact that errors in the recorded out-
come or important baseline covariates have on the 
adjusted estimate of the treatment effect. We then 
consider the usefulness of audit data in this set-
ting for improving estimation in the presence of 
these errors.

Data errors and implications for 
clinical trials
Model framework

Let Z be a p × 1 vector of accurately measured covari-
ates, including the treatment assignment, X is a q × 1 
vector of other important baseline covariates that 
may be observed with error, and Y is a continuous 
outcome of interest. Assume (Y,X,Z) follow the lin-
ear model

Y = β0 + β1X +β2Z + ε

In the special case when Z is a univariate variable 
designating treatment assignment, this model is fre-
quently referred to as an analysis of covariance 
(ANCOVA).

Instead of containing X and Y for all subjects, the 
trial database may contain observations for some 
subjects that are incorrect. To indicate this, we 
introduce W and Y*, where

W = X + SU
Y* = Y + SyUy + SU*

with S being an indicator of the presence of an error 
in W, U representing the magnitude of the errors in 
W, U* representing errors in Y* induced by errors in 
W, Sy indicating other errors in Y* unrelated to the 
errors in W, and Uy representing the magnitude of 
these other errors in Y*. This model was introduced 
by Shepherd and Yu in the context of a cross-sec-
tional HIV study where errors in the database for X 
(date of starting therapy in their example) may have 
induced errors in the recorded Y (CD4 count at start 
of therapy) [1]. This model allows for dependence in 
the errors of W and Y* through (S,U,U*), but assumes 
that (S,U,U*) are independent of (Sy,Uy). Furthermore, 
we assume that (S,U) are independent of X, that 
(Sy,Uy,S,U*) are independent of Y, and that ε is inde-
pendent of (X,Z,S,U,Sy,Uy,U*). These assumptions 
presume that database errors are clerical mistakes, 
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or something of that nature, that are not influenced 
by patient attributes or outcomes.

In a clinical trial, the data collection errors may 
be site dependent in a multisite trial or even related 
to the treatment assignment, say in an unblinded 
trial. Thus, we present methods, which allow for 
dependence between Z and the errors in W and Y*. 
We will also give further consideration to special 
cases of error and covariate dependencies that are 
likely to arise in RCTs. Notice that if there are no 
errors in Y* (i.e., Sy = 0 and U* = 0 with probability 
one; hence Y* = Y), then this model reduces to the 
classical measurement error problem [2,3], except 
that the distribution of errors in the recorded X is a 
mixture distribution with a point mass at zero.

For a more general setting than a randomized 
trial, Shepherd and Yu considered the impact of the 
data errors on estimation β = (β1,β2) when one 
naively fits the linear model

E Y W Z W Z*
0 1 2, =( ) + +γ γ γ

The parameters (γ1,γ2) in the naive model can be 
written as
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where Σab represents the covariance of A and B. In 
contrast, the true parameters are given as
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Let T = W – X and T
~
 = Y* – Y. It follows that Σww = Σxx 

+ Σtt,Σwz = Σxz + Σtz,Σwy* = Σxy + Σxt
~ +Σyt + Σtt

~ and Σzy* = 
Σzy + Σzt

~. Therefore, estimates of (γ1,γ2) will generally 
be biased.

Review of methods

With an audit, the error, or lack thereof, in the out-
come, Y* – Y, and covariates, W – X, is observed for 
a subset of individuals in the study. This informa-
tion can be used to correct for error-induced bias in 
the study estimates. Let V be the indicator that a 
subject is selected for an audit, and for V = 1, the 
true observations for X and Y are obtained. For 
notational simplicity, we assume that the audit is a 
simple random sample of subjects (Shepherd and 
Yu provide some discussion of how the methods 
can be extended in a straightforward manner to 
allow for dependence of V on Z, such as simple ran-
dom sampling within sites).

Shepherd and Yu presented moment estimators 
that correct the naive ordinary least squares (OLS) 
estimators ˆ ˆ ˆγ γ γ= ( , )1 2  for the setting described in 
section ‘Model framework’, with the additional 
assumption that Z can only be correlated with the 
error in W(i.e., S,U) and Z cannot shift the mean of U.  
A more general version of their estimators, which is 
consistent without these added assumptions is
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One can obtain all the necessary moment estimates 
in equation (3) from the audit data, including 
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be applied by setting some parameters as zero based 
on model assumptions or by estimating other 
parameters such as P(S = 1) and Var(U) [1]. Shepherd 
and Yu demonstrated how to construct confidence 
intervals (CIs) for β1 in the univariate case using 
M-estimation techniques and large-sample theory; 
CIs for (β1,β2) in the multivariable case can be simi-
larly constructed.

It should be recognized that these moment-based 
estimators assume that the original error-prone data 
were used as (W,Y*), not a partially corrected ver-
sion (with (W,Y*) set as the truth for the audited 
records). If the data have been corrected (so that 
(W,Y*) consists of (X,Y) for the audited records), 
then the moment-based estimators need to be 
slightly adjusted. When the audit is a simple ran-
dom sample of all records, this can be done simply 
by multiplying all of the estimated variances for the 
error terms in equation (3) by one minus the pro-
portion of records that were audited (i.e., multiply-
ing Σ^ tt, Σ

^
tt
~, Σ^zt, and Σ^xt

~ by (N – nv)/N). This properly 
accounts for the fact that the variance of the data 
errors in the partially corrected data has been 
reduced. This procedure can be easily adapted to 
handle situations where the probability of being 
audited depends on Z.

An alternative approach for obtaining consistent 
estimators of (β1,β2) is to use techniques for dealing 
with missing data such as multiple imputation [9]. 
The complete data (Z,X,Y,W,Y*,V) are only known 
for the subset of records that were audited, whereas 
only (Z,W,Y*,V) is known for those records not 
audited. A multiple imputation approach that uses 
relationships observed in the complete data to 
impute is outlined in the Appendix. One benefit of 
using a missing data/multiple imputation approach 
is that it provides a natural way to account for miss-
ing data and two other types of errors that are often 
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observed in an audit: unverifiable values and unre-
corded values. Specifically, an audit of the source 
documents may be unable to find some values that 
are recorded in the database, or the audit may dis-
cover that a value that was missing in the database 
was actually recorded in the source documents. In 
the former case, X or Y is missing, despite the fact 
that V = 1; in the latter case, (X,Y) are known, but 
either W or Y* is missing.

Randomized trials

Implications for bias
For ease of notation, assume Z is the univariate treat-
ment variable. In the special case of an RCT, rand-
omization implies that Z will be independent of the 
baseline variables. Thus, it is reasonable to assume 
that Z is independent of X, S, U and, hence, W.  
Because Y* is observed post baseline, there is the 
potential for the errors in observing Y to be corre-
lated with Z. Nevertheless, in a double-blinded 
trial, it is reasonable to assume that all error terms 
in Y* are also independent of Z. With these assump-
tions, one has Cov(Z,W) = Cov(Z,X) and Cov(Z,Y*) = 
Cov(Z,Y). Using formulas (1) and (2), we can see 
that in this special case, no bias will occur in the 
usual least squares estimator for the treatment-
effect parameter β2 when one regresses Y* on (W,Z). 
That is

E Y W Z W Z*
0 1 2, =( ) + +γ γ β

In the simple case of a two-arm trial, this same 
result is perhaps more easily seen from the fact that 
the regression estimator of the treatment effect 
from the ANCOVA model (4) is

ˆ ˆβ γ2
* *

1=Y Y W WT C T C− + −( )
where WZ  and YZ

*  are the means of W and Y* in 
treatment arms Z = T (treatment) and Z = C (con-
trol). Regardless of the frequency and magnitude of 
errors in W, randomization will tend to balance the 
covariate W between treatment groups, and thus, 
the error in W is not expected to introduce bias into 
the estimator of β2. This result, and its implications 
for ANCOVA in the presence of covariate measure-
ment error in linear models, is well known and is in 
sharp contrast to the impact of errors in W on β̂2  
for a nonrandomized study [10].

It is important to note that this bias is a large-
sample result and does not rule out chance imbal-
ances between arms in the error-prone covariate W 
having an impact on the estimator of β2 in double-
blinded RCTs. Also, though errors in (Y*,W) are not 

expected to introduce bias into the estimator of β2 
in a typical double-blinded randomized study, the 
error in these variables will have a negative impact 
on precision. It is interesting to note that in the case 
where there are errors only in W, say in trials where 
an end point review committee meticulously veri-
fies every primary end point, this lack of precision 
generally cannot be ameliorated by estimating β2 
with methods that adjust for the error in W. In this 
case, the naive ANCOVA estimate for β2 will provide 
the more efficient estimator of β2 over a large class 
of measurement error methods [11]. Under more 
general error structures, Shepherd and Yu observed 
that error-corrected methods may not result in a 
better mean-squared error (MSE) unless the audit 
comprises a substantial proportion of study records. 
Thus, in the special case of randomized trials, fitting 
the simple ANCOVA model and not correcting for 
data errors in W will frequently yield the best esti-
mator for β2, in terms of MSE. In contrast, estimates 
of β1 will be biased even in a double-randomized 
trial, so incorporating the audit data can improve 
estimation of β1.

One could consider the case where, through 
incomplete blinding, Z could in some way be cor-
related with database errors made in the observa-
tion of Y*. This could occur, for example, if a specific 
intervention led to a more or less error-prone pro-
cess for end point documentation. In practice, this 
may occur with randomization to treatments from 
different specialties (e.g., surgery vs. nonsurgery), 
with different specialists tending to record data dif-
ferently. Consider the case that Cov(Z,SyUy) ≠ 0, but 
randomization yields independence of Z with 
(X,SU,SU*). The standard OLS estimators for Y* 
regressed on W,Z estimate

γ 2
1 1

* *= Σ Σzz ww zy ww wz wy

− − −( )Σ Σ Σ Σ

which implies γ2
 – β2 = Σ–1

zz Σzty, where Ty = SyUy. 
Thus, the treatment-effect parameter is biased, and 
it may be important to incorporate the audit data 
into estimates. Estimators of β1 will also be biased.

Numeric example and simulation

In this section, we illustrate the bias induced by 
data errors under different assumptions and briefly 
investigate the performance of our estimators using 
audit data. Our simulation setting is based on that 
described by Shepherd and Yu, which was roughly 
set up to approximate the relationship between 
CD4 cell count (X) and log10-transformed HIV-1 
RNA (Y) among HIV-infected adults. We extend this 
setting by including a treatment indicator (Z).

 at UNIV OF PENNSYLVANIA on July 7, 2015ctj.sagepub.comDownloaded from 

http://ctj.sagepub.com/


Using audits to adjust estimates    725

http://ctj.sagepub.com	 Clinical Trials 2012; 9: 721–729

Specifically, let Z be from a Bernoulli distribution 
with success probability 0.5. Given Z, X is normally 
distributed with mean 200 + μxzZ and variance 502. 
Given X and Z, Y is normally distributed with mean 
β0 + β1X + β2Z and variance 0.52, where (β0, β1,β2) = 
(6,–0.01,1). W and Y* follow the models given in 
section ‘Model framework’: S is from a Bernoulli dis-
tribution with success probability P; U is normally 
distributed with mean 0, variance σu

2 ; Sy is from a 
Bernoulli distribution with success probability Py; Uy 
given Z is normally distributed with mean μzu

yZ, 
variance 0.52; U* is normally distributed with mean 
0 and variance 0.52; and the correlation between U 
and U* is given by ρu,u*.

In Table 1, we vary the values of μxz ∈{–50,0},μzu
y 

∈{0,1}, ρu,u* ∈ {0,0.5}, ρ ∈ {0.05,0.20}, σu ∈ {25,50}, 
and Py ∈ {0.05,0.2} to examine the bias of (γ1,γ2) 
with respect to (β1,β2) when the model Y* = γ0 + γ1W 
+ γ2Z is fit. By setting μxz = 0, we mimic a rand-
omized trial where Z is independent of X. If Z is also 
independent of the errors in Y* (i.e., in our setup μzu

y 
= 0), then γ2 is unbiased for β2. In contrast, γ1 is a 
biased estimator of β1, and the magnitude of the 
bias depends on the error rate in the recording of X 
(P) and the variance of the magnitude of the errors 
(σu) relative to the variance of X. In the randomized 
trial setting, if the magnitude of errors in Y* depends 
on Z (i.e., in our setup μzu

y = 1), then γ2 is biased. 
Finally, in a nonrandomized trial setting where Z 
and X are dependent (i.e., μxz = –50 in our setup), 
both γ1 and γ2 are biased, with the magnitude of the 
bias depending on the rate, magnitude, and correla-
tion of errors.

We performed a limited set of simulations to 
examine the performance of estimators incorporat-
ing audit data. For these simulations, we generated 
data varying (μxz,μzu

y)between (A) (0,0), a double-
blinded randomized trial; (B) (0,1), a randomized 
trial with errors dependent on Z; and (C) (–50,1), 
an observational study with errors dependent on 
Z. The parameters (ρu,u*,σu,P,Py) were set as 
(0.5,50,0.2,0.2), resulting in the settings that cor-
responded to the maximum bias shown in Table 1. 
In each simulation, we generated N = 1000 vectors 
(Y,X,Y*,W,S,U,Sy,Uy,U*,ε). Within each simulation 
experiment, we computed estimates with the num-
ber of randomly audited charts (nv) being 0, 25, 50, 
100, 300, 500, and 1000. When no charts were 
audited, we computed the naive estimates regress-
ing Y* on (W,Z). A total of 1000 audited charts cor-
responded to having correct data for all records 
and regressing Y on (X,Z). When the number of 
audited charts was between 25 and 500, we esti-
mated (β1,β2) and computed 95% CIs using both 
the moment-based and multiple imputation esti-
mators mentioned above; for those records not 
sampled for the audit (i.e., V = 0), we treated 
(Y,X,S,U,Sy,Uy,U*) as if they were unknown. For 

each of the data-generating scenarios, we per-
formed 1000 simulation replications. A second set 
of simulations were identical except N = 100, and 
nv was either 0, 50, or 100. Simulation code is pro-
vided in the Supplementary Material (posted at 
http://biostat.mc.vanderbilt.edu/DataAudit 
SimulationCode2).

Table 2 shows simulation results for N = 1000. 
Under scenario A (double-blinded randomized 
trial), the naive estimate of β2 had negligible bias 
and outperformed all moment-based, audit-cor-
rected estimators in terms of MSE except for the 
estimator obtained after auditing all 1000 records 
and plugging in the true values for (Y,X,Z). With an 
audit of nv = 500, there was little difference in per-
formance between the multiple imputation and 
naive estimators. Under scenario B (unblinded ran-
domized trial), as expected, the naive estimate of β2 
was biased, the MSE was large, and coverage was 
very poor (0.005). With as few as 25 audits, both the 
multiple imputation and moment estimators were 
essentially unbiased, but they were quite variable – 
particularly the moment-based estimator. An audit 
of nv = 50 was needed for the moment-based estima-
tor to outperform the naive estimator in terms of 
MSE, and only with an audit of nv = 500 did the 
moment-based 95% CI cover at their nominal level. 
In contrast, with an audit of as few as 25 records, 
the multiple imputation approach resulted in a 
lower MSE than the naive estimator. The coverage 
appeared nominal after 50 audits. Similar trends, 
although with more extreme bias, were seen under 
scenario C (observational study). In all three scenar-
ios, naive estimates of β1 were biased; as the audit 
size increased, MSE decreased, and coverage 
improved.

These simulation results clearly demonstrate that 
with the error rates and magnitudes considered 
here, an audit of nv = 25 is insufficient to provide 
corrected estimates with reasonable MSE. This is 
particularly notable with the moment-based estima-
tors under scenario C. This result, however, is some-
what to be expected as with small audits, only a 
handful of audited records will have errors and will 
be used to estimate variances and covariances 
between errors.

In general, and throughout all simulations, the 
multiple imputation estimators tended to outper-
form their moment-based counterparts. The multi-
ple imputation estimators reported in Table 2 drew 
from a fitted distribution where we (correctly) 
assumed errors were normally distributed. However, 
this correct model specification does not appear to 
be driving the superior performance of the multiple 
imputation estimators. In an additional set of simu-
lations, we made no such normality assumption, 
instead imputing with the fitted value plus a ran-
dom residual. The performance of this alternative 
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multiple imputation approach was similar to that of 
the parametric multiple imputation presented in 
Table 2 (see Table in Supplementary Material).

Table 3 demonstrates the performance of esti-
mators under the same setup except with a 
smaller sample size (N = 100) and an audit of size 
nv = 50. In Table 3, we have also included results 
if one were to analyze the data after replacing 
(Y*,W) with (Y,X) for those nv records that were 
audited, but leaving (Y*,W) in those N–nv records 
that were not audited. This approach is common 
in practice, where the errors discovered by the 

audit are often fixed, but the unaudited data are 
treated as if they were correct. In Table 3, we 
label this as the naive correction. This naive cor-
rection outperforms the more naive analysis of 
regressing Y on W,Z; this is not surprising as one 
would expect bias to decrease by (nv/N) × 100% 
(which is seen in our simulations). However, 
except for the estimate of β2 under scenario A 
(randomized trial with Z independent of X and 
errors), with nv = 50, our moment-based and 
multiple imputation estimators outperformed 
the naive correction estimators.

Table 1.  Bias for β1 and β2 as a function of different error model parameters

Treatment randomized Treatment not randomized

Error parameters (μxz = 0) (μxz = –50)

ρu,u* σu P Py % Bias β1 % Bias β2 % Bias β1 % Bias β2

Errors in Y* independent of Z (μzu
y) = 0

0 25 0.05 0.05 −1.2 0 −1.2 0.6
  0.2 −1.2 0 −1.2 0.6
  0.2 0.05 −4.8 0 −4.8 2.4
  0.2 −4.8 0 −4.8 2.4
  50 0.05 0.05 −4.8 0 −4.8 2.4
  0.2 −4.8 0 −4.8 2.4
  0.2 0.05 −16.7 0 −16.7 8.4
  0.2 −16.7 0 −16.7 8.4
0.5 25 0.05 0.05 −2.5 0 −2.5 1.2
  0.2 −2.5 0 −2.5 1.2
  0.2 0.05 −9.5 0 −9.5 4.8
  0.2 −9.5 0 −9.5 4.8
  50 0.05 0.05 −7.1 0 −7.1 3.6
  0.2 −7.1 0 −7.1 3.6
  0.2 0.05 −25 0 −25 12.5
  0.2 −25 0 −25 12.5
Errors in Y* dependent on Z (μzu

y) = 1
0 25 0.05 0.05 −1.2 5 −1.2 5.6
  0.2 −1.2 20 −1.2 20.6
  0.2 0.05 −4.8 5 −4.8 7.4
  0.2 −4.8 20 −4.8 22.4
  50 0.05 0.05 −4.8 5 −4.8 7.4
  0.2 −4.8 20 −4.8 22.4
  0.2 0.05 −16.7 5 −16.7 13.3
  0.2 −16.7 20 −16.7 28.4
0.5 25 0.05 0.05 −2.5 5 −2.5 6.2
  0.2 −2.5 20 −2.5 21.2
  0.2 0.05 −9.5 5 −9.5 9.7
  0.2 −9.5 20 −9.5 24.8
  50 0.05 0.05 −7.1 5 −7.1 8.5
  0.2 −7.1 20 −7.1 23.6
  0.2 0.05 −25 5 −25 17.6
  0.2 −25 20 −25 32.5

ρu,u* : correlation between errors in outcome and covariate; σu
2
: variance of covariate errors; P: probability of covariate error; Py: probability of error in 

outcome.
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Discussion

Audits are commonly used to monitor a trial’s data 
operations and are viewed primarily as a quality 
control and assurance measure. With the methods 
presented here, audits can also be seen as an ana-
lytical tool that allows for the correction of bias in 
trial estimates induced by database errors. We pre-
sented error-correction methods for general cases, 
where complex relationships could exist between 
errors in observed outcomes or covariates. We also 
considered the special case of randomized trials.

If treatment assignment is randomized and inde-
pendent of data errors, ANCOVA estimates of the 
treatment effect will be unbiased and generally less 
variable than the moment or multiple imputation 
estimates described here that incorporate the audit 
data. One would expect treatment assignment to be 
independent of data errors in a double-blinded RCT. 
In this setting, the best approach to estimate the treat-
ment effect is to use the audit data to update the data-
base by correcting any discovered data errors but then 
to perform a standard analysis on the updated data.

If treatment assignment is correlated with error-
prone covariates and/or the covariate errors, then 
ANCOVA estimates of the treatment effect will be 
biased, with the extent of the bias depending on 
the rate and magnitude of the errors, as well as the 
strength of the correlation between treatment 
assignment and the errors or covariates. In a dou-
ble-blinded randomized trial, it is unlikely that 
treatment assignment would be correlated with 

data errors. However, such correlation is conceiv-
able in the context of some unblinded randomized 
trials. For example, consider a trial of two or more 
treatments that require different specialists. If 
data-recording errors differ by specialty, then such 
a correlation may be induced. In addition, many 
phase II clinical trials are not randomized, so bias 
due to data errors in these settings could be of 
concern.

In all of the study settings considered here, stand-
ard estimates of an error-prone covariate effect will 
be biased. Therefore, if estimation of the covariate 
effect is important, methods to incorporate audit 
results into the analysis should be considered. In 
our simulations, we saw that both the moment esti-
mators and our new multiple imputation estimators 
reduced bias. However, we also saw highly variable 
estimates with small audit sizes. Large audits may be 
necessary to get reasonably precise estimates if there 
are substantial data errors. These findings favor two-
stage auditing, where the first audit is used to check 
for errors, and the second audit is performed, if nec-
essary, to gain more information on the rate and 
magnitude of errors. Such an approach was dis-
cussed and applied by Shepherd and Yu.

Our multiple imputation estimators performed 
particularly well. In traditional measurement error 
problems, others have also seen that multiple 
imputation approaches compare favorably to other 
methods [12]; however, multiple imputation has 
been shown to be sensitive to model misspecifica-
tion [13]. Our data audit setting can be framed as a 

Table 3.  Performance of estimators under error scenarios relevant for different types of clinical studies in smaller samples (N = 100)

Scenario Estimatorsa Audit size Estimates of β2 Estimates of β1

% Bias Coverage MSE x 103 % Bias Coverage MSE x 107

A No correction 0 0 0.958 17.2 −24.7 0.471 81.8
  Naive correction 50 0.03 0.952 14.0 −13.2 0.753 34.1
  Moment based 50 0.12 0.935 20.4 2.8 0.948 49.3
  Multiple imputation 50 −0.19 0.944 15.1 0.0 0.931 18.2
  Complete correction 100 −0.25 0.934 10.6 0.8 0.939 10.9
B No correction 0 19.9 0.732 59.7 −24.6 0.531 83.5
  Naive correction 50 9.6 0.899 24.4 −13.5 0.765 37.6
  Moment based 50 −0.56 0.927 23.0 2.1 0.947 51.8
  Multiple imputation 50 −0.10 0.95 15.8 −0.8 0.943 17.5
  Complete correction 100 −0.42 0.953 10.0 0.3 0.946 9.6
C No correction 0 32.4 0.447 131 −23.8 0.552 80.6
  Naive correction 50 16.8 0.780 48.6 −12.7 0.788 35.9
  Moment based 50 −1.49 0.954 44.9 3.2 0.945 65.2
  Multiple imputation 50 0.4 0.958 19.4 −0.4 0.935 18.8
  Complete correction 100 0.18 0.956 12.5 0.2 0.944 10.3

A: double-blinded randomized trial. B: unblinded randomized trial. C: nonrandomized study. Details in text.
aNo correction: Linear model fit to original error-prone data. Naive correction: data corrected for 50 records that were audited and linear model fit to 
complete data including both corrected and uncorrected. Moment based: estimator given in section ‘Review of methods’. Multiple imputation: estimator 
given in Appendix. Complete correction: all 100 records audited and linear model fit to corrected data.
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measurement error problem, although it differs 
from most applications because only a portion of 
the records have data errors and errors are possible, 
and potentially correlated, in both the outcome 
and predictor variables. Further study of multiple 
imputation and other approaches in the data audit 
setting is warranted.

We have only studied bias and correction meth-
ods in settings with a continuous outcome. In clini-
cal trials, binary or time-to-event outcomes are 
particularly common. Although we suspect that 
many of the same principles apply, approaches for 
incorporating audit results in these other settings 
warrant further research.
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Appendix
A multiple imputation approach for 
incorporating audit findings

In this section, we outline a multiple imputation 
approach for estimating (β1,β2). First, for those with 
V = 1, fit a model of X on W, Z, and Y*. Using this 
model, compute the fitted distribution of X for 
those with V = 0. Randomly draw Ximp from this fit-
ted distribution. Next, for those with V = 1, fit a 
model of Y on X, W, Z, and Y*. Using this model, 
compute the fitted distribution of Y for those with 
V = 0. Then, randomly draw Yimp from this fitted 
distribution. For those with V = 0, the complete 
imputed data is (Ximp,Yimp,W,Z,Y*,V), and this is com-
bined with the complete data for those with V = 1 to 
create a complete dataset (Xcomp,Ycomp,W,Z,Y*,V), 
which includes all records. This complete dataset is 
then analyzed. Specifically, fit the model

E Y X Z X Zcomp comp comp, = 0 1 2( ) + +α α α

and record the estimated slopes, ˆ ˆ ˆα α α= ( , )1 2  and 
their variance, ˆ ˆ ˆq q q= ( , )1 2 . This process is then 
repeated M times, resulting in M estimates labeled 
ˆ ˆ ˆα α αi i i= ( , )1 2  and ˆ ˆ ˆq q qi i i= ( , )1 2  for i = 1,. . .,M. The 
multiple imputation estimators of (β1,β2) are then

ˆ ˆβ αj ji
i

M

M
=

1

=1
∑

for j = 1,2, and their variance is estimated as
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measurement error problem, although it differs 
from most applications because only a portion of 
the records have data errors and errors are possible, 
and potentially correlated, in both the outcome 
and predictor variables. Further study of multiple 
imputation and other approaches in the data audit 
setting is warranted.

We have only studied bias and correction meth-
ods in settings with a continuous outcome. In clini-
cal trials, binary or time-to-event outcomes are 
particularly common. Although we suspect that 
many of the same principles apply, approaches for 
incorporating audit results in these other settings 
warrant further research.
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and record the estimated slopes, ˆ ˆ ˆα α α= ( , )1 2  and 
their variance, ˆ ˆ ˆq q q= ( , )1 2 . This process is then 
repeated M times, resulting in M estimates labeled 
ˆ ˆ ˆα α αi i i= ( , )1 2  and ˆ ˆ ˆq q qi i i= ( , )1 2  for i = 1,. . .,M. The 
multiple imputation estimators of (β1,β2) are then
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This multiple imputation procedure can be easily 
altered to take advantage of different model assump-
tions. There is some flexibility for fitting models of 
(X,Y) for those with V = 0. The most simple approach 
is probably to ignore the fact that a large proportion 
of the records have no errors (i.e., X = W and Y =Y*). 
The residuals from this model are then a point mass 
at 0 and some distribution of residuals for those 
records with errors. One can then impute values by 
sampling error from either the residuals or from 
some distribution centered at zero with variance 
equal to the residual variance.
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This multiple imputation procedure can be easily 
altered to take advantage of different model assump-
tions. There is some flexibility for fitting models of 
(X,Y) for those with V = 0. The most simple approach 
is probably to ignore the fact that a large proportion 
of the records have no errors (i.e., X = W and Y =Y*). 
The residuals from this model are then a point mass 
at 0 and some distribution of residuals for those 
records with errors. One can then impute values by 
sampling error from either the residuals or from 
some distribution centered at zero with variance 
equal to the residual variance.
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Table : (Supplementary Material) Performance of estimators under different scenarios relevant for different types
of clinical studies, including a multiple imputation approach that samples observed residuals

Estimates of β2
Moment-based MI with normality MI with random residual

Scenarioa N nv %-Bias Coverage MSE×103 %-Bias Coverage MSE×103 %-Bias Coverage MSE×103

A. 1000 25 -0.66 0.722 52.6 -0.49 0.941 18.7 -0.48 0.943 18.9
50 -0.45 0.752 19.1 -0.44 0.949 9 -0.42 0.947 9.1

100 0 0.785 8.5 -0.04 0.946 4.9 -0.03 0.95 4.9
300 -0.13 0.88 3.1 -0.09 0.949 2.1 -0.09 0.945 2.1
500 -0.15 0.926 1.9 -0.06 0.951 1.4 -0.05 0.952 1.4

B. 1000 25 -1.53 0.65 69 0.46 0.917 25.9 0.45 0.92 26.2
50 -0.58 0.695 26.3 -0.16 0.934 11.5 -0.21 0.943 11.5

100 0.21 0.751 12 0.2 0.93 6.3 0.19 0.932 6.3
300 -0.11 0.869 3.7 -0.03 0.947 2.3 -0.02 0.952 2.3
500 -0.03 0.938 2.1 -0.06 0.951 1.6 -0.07 0.951 1.6

C. 1000 25 -8.69 0.734 770.5 2.6 0.919 34.5 1.76 0.918 34.7
50 -2.94 0.816 67 0.5 0.92 17 0.12 0.923 17

100 -1.26 0.858 25.2 0.23 0.938 7.6 0.03 0.94 7.6
300 -0.29 0.919 6.9 -0.1 0.938 2.9 -0.14 0.949 2.9
500 -0.08 0.935 4 -0.06 0.945 2 -0.08 0.949 2

Estimates of β1
Moment-based MI with normality MI with random residual

Scenarioa N nv %-Bias Coverage MSE×107 %-Bias Coverage MSE×107 %-Bias Coverage MSE×107

A. 1000 25 7.13 0.831 183 -3.27 0.894 27.2 -1.32 0.889 28
50 2.86 0.887 58.8 -1.71 0.914 12.6 -0.7 0.912 12.7

100 1.09 0.915 24.5 -0.54 0.897 7.4 -0.04 0.891 7.5
300 0.23 0.947 6.3 -0.31 0.927 2.4 -0.19 0.923 2.5
500 0.01 0.952 3.8 -0.28 0.93 1.7 -0.23 0.929 1.7

B. 1000 25 9.43 0.887 317.1 -2.02 0.906 33.3 -0.25 0.894 34.3
50 2.98 0.92 69.7 -0.87 0.9 15.2 -0.01 0.894 15.6

100 1.5 0.944 24.4 -0.07 0.922 7.6 0.36 0.916 7.7
300 0.45 0.96 7.6 -0.07 0.923 2.6 0.06 0.928 2.7
500 0.42 0.953 4.3 0.09 0.955 1.6 0.15 0.956 1.6

C. 1000 25 14.58 0.891 1496.6 -1.84 0.905 33.7 -0.17 0.89 35.1
50 5 0.932 104.6 -0.43 0.913 16 0.36 0.897 16.3

100 1.41 0.948 34.3 -0.43 0.921 7.4 -0.06 0.913 7.5
300 0.18 0.949 9.6 -0.2 0.938 2.5 -0.11 0.936 2.5
500 0.03 0.938 5.3 -0.11 0.945 1.6 -0.07 0.947 1.7

a A. Double-blinded randomized trial. B. Unblinded randomized trial. C. Non-randomized study. Details in text.
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